簡易檢索 / 詳目顯示

研究生: 駱妍汎
Yen-Fan Lo
論文名稱: 二氧化鈦擔載氧化釕觸媒的選擇性氧化反應分析
Selective oxidation reaction with molecular oxygen using TiO2 supported RuO2
指導教授: 林昇佃
Shawn D. Lin
口試委員: 鍾博文
Po-Wen Chung
陳敬勳
Ching-Shiun Chen
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 48
中文關鍵詞: RuO2/TiO2沉積沉澱法液相1-苯乙醇氧化反應氣相氨氧氧化反應
外文關鍵詞: RuO2/TiO2, deposition-precipitation method, liquid-phase oxidation of 1-phenylethanol, gas-phase oxidation of ammonia
相關次數: 點閱:193下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在選擇性催化氧化反應中,金紅石結晶結構的二氧化釕是廣為人知的觸媒材料。利用載體擔載二氧化釕能避免奈米粒子聚集以及高溫燒結的情況,本研究選用具有相同金紅石結晶結構之二氧化鈦為載體材料,依據其結構相容性增加二氧化釕分散性藉以提升催化活性。本研究採用沉積沉澱法來合成二氧化鈦擔載二氧化釕觸媒,並比較氫氧化鈉和尿素當作鹼性沉澱劑對於觸媒特性的影響。另外不同前處理條件會影響二氧化釕晶粒大小進而導致不同的催化活性。利用氧氣為氧化劑進行液態1-苯乙醇以及氣相氨氣兩種氧化反應來探討觸媒催化效果。
在液相氧化反應中,改變二氧化鈦載體結晶結構對反應活性有顯著影響,其中以無晶型含水氧化釕具有較高活性。透過動力學分析得知反應常數不僅和具有活性含水氧化釕量有關,氧化釕與載體之作用力亦是影響參數。另外氣相氨氣氧化反應中,數據顯示觸媒催化活性只與二氧化釕晶粒大小有關。


Ruthenium oxide, RuO2, with a rutile crystal structure, is a well-known catalyst for selective oxidation reaction. However, RuO2 nanoparticles are inclined to deactivation owing to the occurrence of aggregation or sintering during heat treatment. Consequently, RuO2 should be dispersed on a support and the interaction between RuO2 and support would govern the catalytic activity and the tendency of sintering. Rutile TiO2 could be a suitable support material for the possible structure compatibility. In this study, a deposition-precipitation method (DP) with two alkaline precipitating reagents, sodium hydroxide and urea, is used to synthesize supported RuO2 catalysts. Different pretreatment conditions are also examined, resulting in RuO2 of different particle size on TiO2. Two oxidation reactions with molecular oxygen are tested; one is liquid-phase oxidation of 1-phenylethanol and the other is gas-phase oxidation of ammonia.
From the oxidation of 1-phenylethanol, as-prepared supported amorphous hydrated RuOx possesses the highest activity among the tested samples. Also, the precipitating alkaline reagent has no influence on the reactivity. In addition, changing the crystal phase of TiO2 support to anatase can promote the reactivity significantly. The pseudo 1st-order rate constant not only depends on the amount of active hydrated RuOx but the RuOx-TiO2 support interaction. On the other hand, the reactivity to oxidation of ammonia is independent on the support crystal structure but is possible related to the particle size of RuO2.

摘要 I Abstract II 致謝 III Table of Contents IV List of Figures VI List of Tables VIII Chapter 1. Introduction 1 1.1 Background 1 1.2 Literature review 1 1.2.1 Physicochemical properties of ruthenium oxide 1 1.2.2 Preparation of TiO2-supported RuO2 3 1.2.3 Oxidation over RuO2 catalyst by molecular oxygen 3 1.3 Objectives of the study 7 Chapter 2. Experimental 8 2.1 Materials and Instruments 8 2.1.1 Materials 8 2.1.2 Instruments 8 2.2 Catalyst preparation 9 2.2.1 TiO2 9 2.2.2 RuO2/TiO2 9 2.3 Catalyst characterization 10 2.3.1 Inductively coupled plasma with atomic emission spectroscopy (ICP-AES) 10 2.3.2 Mass spectroscopy (MS) 10 2.3.3 Thermogravimetric analysis (TGA) 10 2.3.4 X-ray diffraction (XRD) 10 2.3.5 Raman spectroscopy 11 2.3.6 X-ray absorption spectroscopy (XAS) 11 2.3.7 Surface area and pore size distribution analyzer (BET) 11 2.3.8 Transmission electron microscopy (TEM) 12 2.4 Catalytic activity measurement 12 2.4.1 Liquid-phase aerobic oxidation of 1-phenylethanol 12 2.4.2 Gas-phase selective catalytic oxidation of ammonia (NH3-SCO) 13 Chapter 3. Results and Discussion 14 3.1 Characterization 14 3.1.1 Preparation of RuO2/TiO2 14 3.1.2 Properties of RuO2/TiO2 18 3.2 Liquid-phase aerobic oxidation of 1-phenylethanol 26 3.2.1 Rutile TiO2 supported RuO2 26 3.2.2 RuO2 with different crystal structures of TiO2 supports by DPU method 32 3.3 Gas-phase selective catalytic oxidation of ammonia 41 Chapter 4. Conclusions 44 References 45

1. Taylor, S., Catalysts, 2017. 7(12).
2. Guo, Z., B. Liu, Q. Zhang, W. Deng, Y. Wang, and Y. Yang, Chem Soc Rev, 2014. 43(10): p. 3480-524.
3. Nuryawan, A., I. Risnasari, T. Sucipto, A. Heri Iswanto, and R. Rosmala Dewi, IOP Conference Series: Materials Science and Engineering, 2017. 223.
4. Nie, L., D. Mei, H. Xiong, B. Peng, Z. Ren, X.I.P. Hernandez, A. DeLaRiva, M. Wang, M.H. Engelhard, L. Kovarik, A.K. Datye, and Y. Wang, Science, 2017. 358(6369): p. 1419-1423.
5. Ma, Y., F. Li, X. Ren, W. Chen, C. Li, P. Tao, C. Song, W. Shang, R. Huang, B. Lv, H. Zhu, T. Deng, and J. Wu, ACS Appl Mater Interfaces, 2018. 10(17): p. 15322-15327.
6. Kolobova, E., A. Pestryakov, G. Mamontov, Y. Kotolevich, N. Bogdanchikova, M. Farias, A. Vosmerikov, L. Vosmerikova, and V. Cortes Corberan, Fuel, 2017. 188: p. 121-131.
7. Agarwal, N., S.J. Freakley, R.U. McVicker, S.M. Althahban, N. Dimitratos, Q. He, D.J. Morgan, R.L. Jenkins, D.J. Willock, S.H. Taylor, C.J. Kiely, and G.J. Hutchings, Science, 2017. 358: p. 223-227.
8. Xiao, Y., Y. Wang, and A. Varma, J. Catal., 2018. 363: p. 144-153.
9. JAMA, 1885. V(23): p. 632-632.
10. Namboodiri, V.V., R.S. Varma, E. Sahle-Demessie, and U.R. Pillai, Green Chem., 2002. 4(2): p. 170-173.
11. Tian, J., X. Hu, N. Wei, Y. Zhou, X. Xu, H. Cui, and H. Liu, Sol. Energy Mater. Sol. Cells, 2016. 151: p. 7-13.
12. Yu, H., X. Fu, C. Zhou, F. Peng, H. Wang, and J. Yang, Chem Commun (Camb), 2009(17): p. 2408-10.
13. Over, H., Chem. Rev., 2012. 112(6): p. 3356-3426.
14. Over, H., Y.D. Kim, A.P. Seitsonen, S. Wendt, E. Lundgren, M. Schmid, P. Varga, A. Morgante, and C. Ertl, Science, 2000. 287: p. 1474-1476.
15. Yamaguchi, K., J.W. Kim, J. He, and N. Mizuno, J. Catal., 2009. 268(2): p. 343-349.
16. Meng, Q.-Y., Q. Liu, J.-J. Zhong, H.-H. Zhang, Z.-J. Li, B. Chen, C.-H. Tung, and L.-Z. Wu, Org. Lett., 2012. 14(23): p. 5992-5995.
17. Lin, Q., Y. Huang, Y. Wang, L. Li, X.Y. Liu, F. Lv, A. Wang, W.-C. Li, and T. Zhang, J. Mater. Chem. A, 2014. 2(15): p. 5178-5181.
18. Lin, Q., X.Y. Liu, Y. Jiang, Y. Wang, Y. Huang, and T. Zhang, Catal. Sci. Technol., 2014. 4(7): p. 2058-2063.
19. SEKI, K., T. HIBI, K. ISSOH, T. SUZUTA, M. NAKADA, Y. MORI, and T. ABE, Sumitomo Kagaku, 2004. I: p. 1-11.
20. Nguyen-Phan, T.D., S. Luo, D. Vovchok, J. Llorca, S. Sallis, S. Kattel, W. Xu, L.F. Piper, D.E. Polyansky, S.D. Senanayake, D.J. Stacchiola, and J.A. Rodriguez, Phys Chem Chem Phys, 2016. 18(23): p. 15972-9.
21. Kundu, S., A.B. Vidal, F. Yang, P.J. Ramírez, S.D. Senanayake, D. Stacchiola, J. Evans, P. Liu, and J.A. Rodriguez, J. Phys. Chem. C, 2012. 116(7): p. 4767-4773.
22. Xu, J., X. Su, H. Duan, B. Hou, Q. Lin, X. Liu, X. Pan, G. Pei, H. Geng, Y. Huang, and T. Zhang, J. Catal., 2016. 333: p. 227-237.
23. Perkas, N., Z. Zhong, L. Chen, M. Besson, and A. Gedanken, Catal. Lett., 2005. 103(1-2): p. 9-14.
24. Carballo, J.M.G., E. Finocchio, S. García-Rodriguez, M. Ojeda, J.L.G. Fierro, G. Busca, and S. Rojas, Catal. Today, 2013. 214: p. 2-11.
25. Dozzi, M.V. and E. Selli, J. Adv. Oxid. Technol., 2016. 19(2): p. 246-255.
26. Kumar, V.P., Y. Harikrishna, N. Nagaraju, and K.V.R. Chary, Indian J. Chem., 2014. 53A: p. 516-523.
27. Haber, J., J.H. Block, and B. Delmon, Pure Appl. Chem., 1995. 67(8-9): p. 1257–1306.
28. Pusawale, S.N., P.R. Deshmukh, J.L. Gunjakar, and C.D. Lokhande, Mater. Chem. Phys., 2013. 139(2-3): p. 416-422.
29. Xue, T. and K. Osseo-Asare, J. Less-common Met., 1989. 152: p. 103-114.
30. Zang, L. and H. Kisch, Angew. Chem. Int. Ed. Engl., 2000. 39(21): p. 3921-3922.
31. Fan, C.Y., J. Wang, K. Jacobi, and G. Ertl, J. Chem. Phys., 2001. 114(22): p. 10058-10062.
32. Madhavaram, H., H. Idriss, S. Wendt, Y.D. Kim, M. Knapp, H. Over, J. Aßmann, E. Löffler, and M. Muhler, J. Catal., 2001. 202(2): p. 296-307.
33. Liu, H. and E. Iglesia, J. Phys. Chem. B, 2005. 109: p. 2155-2163.
34. López, N., J. Gómez-Segura, R.P. Marín, and J. Pérez-Ramírez, J. Catal., 2008. 255(1): p. 29-39.
35. Zweidinger, S., D. Crihan, M. Knapp, J.P. Hofmann, A.P. Seitsonen, C.J. Weststrate, E. Lundgren, J.N. Andersen, and H. Over, J. Phys. Chem. C, 2008. 112(27): p. 9966-9969.
36. Yamaguchi, K. and N. Mizuno, Angew. Chem. Int. Ed. Engl., 2002. 41(23): p. 4538-4542.
37. Mannel, D.S., S.S. Stahl, and T.W. Root, Org Process Res Dev, 2014. 18(11): p. 1503-1508.
38. Ebitani, K., K. Motokura, T. Mizugaki, and K. Kaneda, Angew Chem Int Ed Engl, 2005. 44(22): p. 3423-6.
39. Zhan, B.-Z., M.A. White, T.-K. Sham, J.A. Pincock, R.J. Doucet, K.V. Ramana Rao, K.N. Robertson, and T.S. Cameron, J. Am. Chem. Soc., 2003. 125: p. 2195-2199.
40. Wang, Y., K. Jacobi, W.-D. Schöne, and G. Ertl, J. Phys. Chem. B, 2005. 109: p. 7883-7893.
41. Pe´rez-Ramı´rez, J., N.r. Lo´pez, and E.V. Kondratenko, J. Phys. Chem. C, 2010. 114: p. 16660–16668.
42. Nagaoka, K., T. Eboshi, Y. Takeishi, R. Tasaki, K. Honda, K. Imamura, and K. Sato, Sci. Adv., 2017. 3(4): p. e1602747.
43. Cui, X., J. Zhou, Z. Ye, H. Chen, L. Li, M. Ruan, and J. Shi, J. Catal., 2010. 270(2): p. 310-317.
44. Cui, X., L. Chen, Y. Wang, H. Chen, W. Zhao, Y. Li, and J. Shi, ACS Catal., 2014. 4(7): p. 2195-2206.
45. Sharma, P.K., N. Saxena, A. Bhatt, C. Rajagopal, and P.K. Roy, Catal. Sci. Technol., 2013. 3(4): p. 1017-1026.
46. Zanella, R., L. Delannoy, and C. Louis, Appl. Catal. A-Gen., 2005. 291(1-2): p. 62-72.
47. Amir, F.Z., V.H. Pham, and J.H. Dickerson, RSC Adv., 2015. 5(83): p. 67638-67645.
48. Rolison, D.R., P.L. Hagans, K.E. Swider, and J.W. Long, Langmuir, 1999. 15: p. 774-779.
49. Bhaskar, S., P.S. Dobal, S.B. Majumder, and R.S. Katiyar, J. Appl. Phys., 2001. 89(5): p. 2987-2992.
50. Hu, C.-C., W.-C. Chen, and K.-H. Chang, J. Electrochem. Soc., 2004. 151(2): p. A281-A290.
51. Song, K.C. and Y. Kang, Mater. Lett., 2000. 42: p. 283–289.
52. Tsuji, E., A. Imanishi, K.-i. Fukui, and Y. Nakato, Electrochim. Acta, 2011. 56(5): p. 2009-2016.
53. McKeown, D.A., P.L. Hagans, L.P.L. Carette, A.E. Russell, K.E. Swider, and D.R. Rolison, J. Phys. Chem. B, 1999. 103: p. 4825-4832.
54. Chen, I.L., Y.-C. Wei, T.-Y. Chen, C.-C. Hu, and T.-L. Lin, J. Power Sources, 2014. 268: p. 430-438.
55. Mondelli, C., D. Ferri, and A. Baiker, J. Catal., 2008. 258(1): p. 170-176.
56. Yamaguchi, K., K. Mori, T. Mizugaki, K. Ebitani, and K. Kaneda, J. Am. Chem. Soc., 2000. 122: p. 7144-7145.
57. Tayade, R.J., P.K. Surolia, R.G. Kulkarni, and R.V. Jasra, Sci. Technol. Adv. Mater., 2016. 8(6): p. 455-462.
58. Watson, S., D. Beydoun, J. Scott, and R. Amal, J. Nanoparticle Res., 2004. 6: p. 193-207.
59. Erdtman, E., M. Andersson, A. Lloyd Spetz, and L. Ojamäe, Surf. Sci., 2017. 656: p. 77-85.

QR CODE