簡易檢索 / 詳目顯示

研究生: 陳奕安
Yi-An Chen
論文名稱: 過渡金屬二硫族化物其異質結構之能隙研究應用於二氧化碳光催化還原
The band structure research of TMDs heterostructure for photocatalytic reduction of CO2
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
戴龑
Yian Tai
林昇佃
Shawn D. Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 117
中文關鍵詞: 光觸媒二氧化碳還原過渡金屬二硫族化物異質結構
外文關鍵詞: Photocatalyst, CO2 reduction, Transition metal dichalcogenides, Heterostructure
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 第二章 實驗原理與文獻探討 5 2.1 光觸媒的原理與發展 5 2.2 二氧化碳光催化還原 7 2.2.1 金屬氧化物觸媒系統 11 2.2.2 金屬硫化物觸媒系統 15 2.2.3 半導體複合材料觸媒系統 16 2.3 過渡金屬二硫族化物介紹 25 2.3.1 背景 25 2.3.2 TMDs 組成與結構 25 2.3.3 TMDs 電子能隙結構 28 2.3.4 TMDs 層數與能隙 29 2.4 TMDs應用於二氧化碳光催化還原 31 第三章 實驗方法與儀器介紹 37 3.1 實驗儀器 38 3.1.1 熱蒸鍍機(Thermal Evaporation Coater) 38 3.1.2 CVD (chemical vapor deposition) 40 3.2 檢測儀器 42 3.2.1 拉曼光譜儀(Raman Spectrometer) 42 3.2.2 紫外光-可見光光譜儀(UV-Visible Spectrometer, UV-Vis) 44 3.2.3 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 45 3.2.4 光學顯微鏡(Optical microscope) 47 3.2.5 原子力顯微鏡(Atomic Force Microscope, AFM) 48 3.2.6 場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope, FE-SEM) 50 3.2.7 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 51 3.2.8 表面電位顯微鏡(Kelvin probe force microscope, KPFM) 52 3.2.9 氣相管柱層析儀(Gas Chromatography, GC) 54 3.3 實驗流程 57 3.3.1 基板清洗 57 3.3.2 熱蒸鍍薄膜沉積系統與製程 57 3.3.3 化學氣相沉積系統與製程 58 3.3.4 實驗流程簡圖 59 第四章 薄膜特性分析與討論 60 4.1 二氧化鎢薄膜鑑定與分析 60 4.1.1 AFM厚度分析 60 4.1.2 拉曼光譜分析 63 4.1.3 X光光電子能譜儀分析 66 4.1.4 X光光電子能譜儀之VBM分析 70 4.1.5 紫外光-可見光光譜儀分析 72 4.1.6 表面電位顯微鏡分析(KPFM) 75 4.1.7 不同厚度下二硫化鎢薄膜之能隙位置圖 76 4.1.8 氣相管柱層析儀分析 78 4.2 異質結構薄膜鑑定與分析 79 4.2.1 異質結構薄膜拉曼光譜分析 79 4.2.2 異質結構薄膜穿透式電子顯微鏡分析 81 4.2.3 異質結構薄膜X光光電子能譜儀分析 83 4.2.4 異質結構薄膜氣相管柱層析儀分析 89 4.2.5 異質結構薄膜圖樣化研究 93 第五章 結論 95 第六章 參考資料 96

[1] A. L. Linsebigler, Guangquan. Lu, and J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chem. Rev., vol. 95, no. 3, pp. 735–758, May 1995.
[2] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, p. 37, Jul. 1972.
[3] M. Halmann, “Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells,” Nature, vol. 275, no. 5676, p. 115, Sep. 1978.
[4] T. Inoue, A. Fujishima, S. Konishi, and K. Honda, “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders,” Nature, vol. 277, no. 5698, p. 637, Feb. 1979.
[5] F. P. Koffyberg and F. A. Benko, “A photoelectrochemical determination of the position of the conduction and valence band edges of p ‐type CuO,” J. Appl. Phys., vol. 53, no. 2, pp. 1173–1177, Feb. 1982.
[6] Y. Matsumoto, “Energy Positions of Oxide Semiconductors and Photocatalysis with Iron Complex Oxides,” J. Solid State Chem., vol. 126, no. 2, pp. 227–234, Nov. 1996.
[7] P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, “Cu2O: a catalyst for the photochemical decomposition of water?,” Chem. Commun., no. 12, pp. 1069–1070, 1999.
[8] B. Carlson, K. Leschkies, E. S. Aydil, and X.-Y. Zhu, “Valence Band Alignment at Cadmium Selenide Quantum Dot and Zinc Oxide (101̅0) Interfaces,” J. Phys. Chem. C, vol. 112, no. 22, pp. 8419–8423, Jun. 2008.
[9] Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” Am. Mineral., vol. 85, no. 3–4, pp. 543–556, Mar. 2000.
[10] E. Pastor et al., “Interfacial charge separation in Cu 2 O/RuO x as a visible light driven CO 2 reduction catalyst,” Phys. Chem. Chem. Phys., vol. 16, no. 13, pp. 5922–5926, 2014.
[11] A. D. Handoko and J. Tang, “Controllable proton and CO2 photoreduction over Cu2O with various morphologies,” Int. J. Hydrog. Energy, vol. 38, no. 29, pp. 13017–13022, Sep. 2013.
[12] A. H. Yahaya, M. A. Gondal, and A. Hameed, “Selective laser enhanced photocatalytic conversion of CO2 into methanol,” Chem. Phys. Lett., vol. 400, no. 1–3, pp. 206–212, Dec. 2004.
[13] P. D. Tran, L. H. Wong, J. Barber, and J. S. C. Loo, “Recent advances in hybrid photocatalysts for solar fuel production,” Energy Environ. Sci., vol. 5, no. 3, p. 5902, 2012.
[14] X. Li, Z. Zhuang, W. Li, and H. Pan, “Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2,” Appl. Catal. Gen., vol. 429–430, pp. 31–38, Jul. 2012.
[15] S. C. Yan et al., “A Room-Temperature Reactive-Template Route to Mesoporous ZnGa2O4 with Improved Photocatalytic Activity in Reduction of CO2,” Angew. Chem. Int. Ed., vol. 49, no. 36, pp. 6400–6404, Aug. 2010.
[16] Q. Liu et al., “High-Yield Synthesis of Ultralong and Ultrathin Zn 2 GeO 4 Nanoribbons toward Improved Photocatalytic Reduction of CO 2 into Renewable Hydrocarbon Fuel,” J. Am. Chem. Soc., vol. 132, no. 41, pp. 14385–14387, Oct. 2010.
[17] K. Iizuka, T. Wato, Y. Miseki, K. Saito, and A. Kudo, “Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa 4 Ti 4 O 15 (A = Ca, Sr, and Ba) Using Water as a Reducing Reagent,” J. Am. Chem. Soc., vol. 133, no. 51, pp. 20863–20868, Dec. 2011.
[18] Q. Zhang, Y. Li, E. A. Ackerman, M. Gajdardziska-Josifovska, and H. Li, “Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels,” Appl. Catal. Gen., vol. 400, no. 1–2, pp. 195–202, Jun. 2011.
[19] M. Stock and S. Dunn, “LiNbO 3 —A Polar Material for Solid-Gas Artificial Photosynthesis,” Ferroelectrics, vol. 419, no. 1, pp. 9–13, Jan. 2011.
[20] W. Tu et al., “Robust Hollow Spheres Consisting of Alternating Titania Nanosheets and Graphene Nanosheets with High Photocatalytic Activity for CO2 Conversion into Renewable Fuels,” Adv. Funct. Mater., vol. 22, no. 6, pp. 1215–1221, Mar. 2012.
[21] H.-C. Hsu et al., “Graphene oxide as a promising photocatalyst for CO 2 to methanol conversion,” Nanoscale, vol. 5, no. 1, pp. 262–268, 2013.
[22] G. Xi et al., “Ultrathin W18O49 Nanowires with Diameters below 1 nm: Synthesis, Near-Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide,” Angew. Chem. Int. Ed., vol. 51, no. 10, pp. 2395–2399, Mar. 2012.
[23] Q. Liu, Y. Zhou, Z. Tian, X. Chen, J. Gao, and Z. Zou, “Zn 2 GeO 4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO 2 into CH 4 under visible light after nitridation,” J Mater Chem, vol. 22, no. 5, pp. 2033–2038, 2012.
[24] X. Li, Z. Zhuang, W. Li, and H. Pan, “Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2,” Appl. Catal. Gen., vol. 429–430, pp. 31–38, Jul. 2012.
[25] S. Yan, H. Yu, N. Wang, Z. Li, and Z. Zou, “Efficient conversion of CO 2 and H2O into hydrocarbonfuel over ZnAl 2 O 4 -modified mesoporous ZnGaNO under visible light irradiation,” Chem Commun, vol. 48, no. 7, pp. 1048–1050, 2012.
[26] H. Park, J. H. Choi, K. M. Choi, D. K. Lee, and J. K. Kang, “Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane,” J. Mater. Chem., vol. 22, no. 12, p. 5304, 2012.
[27] W.-N. Wang et al., “Size and Structure Matter: Enhanced CO 2 Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on TiO 2 Single Crystals,” J. Am. Chem. Soc., vol. 134, no. 27, pp. 11276–11281, Jul. 2012.
[28] X. Li, H. Pan, W. Li, and Z. Zhuang, “Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts,” Appl. Catal. Gen., vol. 413–414, pp. 103–108, Jan. 2012.
[29] J. Núñez, V. A. de la Peña O’Shea, P. Jana, J. M. Coronado, and D. P. Serrano, “Effect of copper on the performance of ZnO and ZnO1−xNx oxides as CO2 photoreduction catalysts,” Catal. Today, vol. 209, pp. 21–27, Jun. 2013.
[30] B. D. Mankidy, B. Joseph, and V. K. Gupta, “Photo-conversion of CO 2 using titanium dioxide: enhancements by plasmonic and co-catalytic nanoparticles,” Nanotechnology, vol. 24, no. 40, p. 405402, Oct. 2013.
[31] W.-J. Ong, M. M. Gui, S.-P. Chai, and A. R. Mohamed, “Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation,” RSC Adv., vol. 3, no. 14, p. 4505, 2013.
[32] Q. Zhai et al., “Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Co-catalysts with a Core–Shell Structure,” Angew. Chem. Int. Ed., vol. 52, no. 22, pp. 5776–5779, 2013.
[33] Z. Zhang, Z. Wang, S.-W. Cao, and C. Xue, “Au/Pt Nanoparticle-Decorated TiO 2 Nanofibers with Plasmon-Enhanced Photocatalytic Activities for Solar-to-Fuel Conversion,” J. Phys. Chem. C, vol. 117, no. 49, pp. 25939–25947, Dec. 2013.
[34] M. Tahir and N. S. Amin, “Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites,” Appl. Catal. B Environ., vol. 142–143, pp. 512–522, Oct. 2013.
[35] P. Li et al., “Constructing cubic–orthorhombic surface-phase junctions of NaNbO 3 towards significant enhancement of CO 2 photoreduction,” J Mater Chem A, vol. 2, no. 16, pp. 5606–5609, 2014.
[36] Z. Q. He, D. Wang, H. Y. Fang, J. M. Chen, and S. Song, “Highly efficient and stable Ag/AgIO 3 particles for photocatalytic reduction of CO 2 under visible light,” Nanoscale, vol. 6, no. 18, p. 10540, Jul. 2014.
[37] H. Shi, G. Chen, C. Zhang, and Z. Zou, “Polymeric g-C 3 N 4 Coupled with NaNbO3 Nanowires toward Enhanced Photocatalytic Reduction of CO 2 into Renewable Fuel,” ACS Catal., vol. 4, no. 10, pp. 3637–3643, Oct. 2014.
[38] S.-W. Cao et al., “Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts,” Appl. Catal. B Environ., vol. 147, pp. 940–946, Apr. 2014.
[39] Y. He et al., “Z-scheme SnO2−x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction,” Sol. Energy Mater. Sol. Cells, vol. 137, pp. 175–184, Jun. 2015.
[40] W.-J. Ong, L. K. Putri, L.-L. Tan, S.-P. Chai, and S.-T. Yong, “Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide,” Appl. Catal. B Environ., vol. 180, pp. 530–543, Jan. 2016.
[41] D. Wang et al., “Ag/Ag2SO3 plasmonic catalysts with high activity and stability for CO2 reduction with water vapor under visible light,” Environ. Sci. Pollut. Res., vol. 23, no. 18, pp. 18369–18378, Sep. 2016.
[42] K. S. Novoselov et al., “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, no. 5696, pp. 666–669, Oct. 2004.
[43] J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys., vol. 18, no. 73, pp. 193–335, May 1969.
[44] L. F. Mattheiss, “Band Structures of Transition-Metal-Dichalcogenide Layer Compounds,” Phys. Rev. B, vol. 8, no. 8, pp. 3719–3740, Oct. 1973.
[45] M. Osada and T. Sasaki, “Two-Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks,” Adv. Mater., vol. 24, no. 2, pp. 210–228, Jan. 2012.
[46] A. Ayari, E. Cobas, O. Ogundadegbe, and M. S. Fuhrer, “Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides,” J. Appl. Phys., vol. 101, no. 1, p. 014507, Jan. 2007.
[47] D. Pacilé, J. C. Meyer, Ç. Ö. Girit, and A. Zettl, “The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes,” Appl. Phys. Lett., vol. 92, no. 13, p. 133107, Mar. 2008.
[48] C. R. Dean et al., “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol., vol. 5, no. 10, pp. 722–726, Oct. 2010.
[49] A. D. Yoffe, “Layer Compounds,” Annu. Rev. Mater. Sci., vol. 3, no. 1, pp. 147–170, 1973.
[50] A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Adv. Phys., vol. 42, no. 2, pp. 173–262, Apr. 1993.
[51] S. A. Han, R. Bhatia, and S.-W. Kim, “Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides,” Nano Converg., vol. 2, no. 1, p. 17, Dec. 2015.
[52] R. M. A. Lieth and J. C. J. M. Terhell, “Transition Metal Dichalcogenides,” in Preparation and Crystal Growth of Materials with Layered Structures, R. M. A. Lieth, Ed. Dordrecht: Springer Netherlands, 1977, pp. 141–223.
[53] Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers,” Phys. B Condens. Matter, vol. 406, no. 11, pp. 2254–2260, May 2011.
[54] R. Dong and I. Kuljanishvili, “Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems,” J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., vol. 35, no. 3, p. 030803, May 2017.
[55] X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev., vol. 44, no. 9, pp. 2757–2785, 2015.
[56] F. A. Lévy, Intercalated Layered Materials. Springer Science & Business Media, 2012.
[57] L. F. Mattheiss, “Energy Bands for 2 H − Nb Se 2 and 2 H − Mo S 2,” Phys. Rev. Lett., vol. 30, no. 17, pp. 784–787, Apr. 1973.
[58] Th. Finteis et al., “Occupied and unoccupied electronic band structure of WSe 2,” Phys. Rev. B, vol. 55, no. 16, pp. 10400–10411, Apr. 1997.
[59] K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides,” J. Phys. Chem., vol. 86, no. 4, pp. 463–467, Feb. 1982.
[60] A. R. Beal, H. P. Hughes, and W. Y. Liang, “The reflectivity spectra of some group VA transition metal dichalcogenides,” J. Phys. C Solid State Phys., vol. 8, no. 24, pp. 4236–4234, Dec. 1975.
[61] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem., vol. 5, no. 4, pp. 263–275, Apr. 2013.
[62] A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, “Electronic band structure of single-crystal and single-layer WS 2 : Influence of interlayer van der Waals interactions,” Phys. Rev. B, vol. 64, no. 20, p. 205416, Nov. 2001.
[63] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS 2 : A New Direct-Gap Semiconductor,” Phys. Rev. Lett., vol. 105, no. 13, p. 136805, Sep. 2010.
[64] A. Splendiani et al., “Emerging Photoluminescence in Monolayer MoS 2,” Nano Lett., vol. 10, no. 4, pp. 1271–1275, Apr. 2010.
[65] H. R. Gutiérrez et al., “Extraordinary Room-Temperature Photoluminescence in Triangular WS 2 Monolayers,” Nano Lett., vol. 13, no. 8, pp. 3447–3454, Aug. 2013.
[66] H. Zeng et al., “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep., vol. 3, no. 1, p. 1608, Dec. 2013.
[67] J. Wu, Y. Huang, W. Ye, and Y. Li, “CO2 Reduction: From the Electrochemical to Photochemical Approach,” Adv. Sci., vol. 4, no. 11, p. 1700194, Nov. 2017.
[68] C. Zhang et al., “Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures,” 2D Mater., vol. 4, no. 1, p. 015026, Nov. 2016.
[69] J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al-Ghamdi, “Heterojunction Photocatalysts,” Adv. Mater., vol. 29, no. 20, p. 1601694, May 2017.
[70] H. Chen et al., “Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics,” Opt. Lett., vol. 42, no. 21, p. 4279, Nov. 2017.
[71] X. Hong et al., “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol., vol. 9, no. 9, pp. 682–686, Sep. 2014.
[72] H. Terrones et al., “New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides,” Sci. Rep., vol. 4, no. 1, p. 4215, May 2015.
[73] W. Zhao et al., “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2,” Nanoscale, vol. 5, no. 20, p. 9677, 2013.
[74] Y. Li et al., “Accurate identification of layer number for few-layer WS 2 and WSe 2 via spectroscopic study,” Nanotechnology, vol. 29, no. 12, p. 124001, Mar. 2018.
[75] Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. H. Wu, “Interference enhancement of Raman signal of graphene,” Appl. Phys. Lett., vol. 92, no. 4, p. 043121, Jan. 2008.
[76] Y. S. Zou et al., “Structural and optical properties of WO3 films deposited by pulsed laser deposition,” J. Alloys Compd., vol. 583, pp. 465–470, Jan. 2014.
[77] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from Chemically Exfoliated MoS 2,” Nano Lett., vol. 11, no. 12, pp. 5111–5116, Dec. 2011.
[78] T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts,” Science, vol. 317, no. 5834, pp. 100–102, Jul. 2007.
[79] H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, and C. J. Chang, “A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation,” vol. 335, p. 6, 2012.

無法下載圖示 全文公開日期 2024/08/27 (校內網路)
全文公開日期 2024/08/27 (校外網路)
全文公開日期 2024/08/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE