簡易檢索 / 詳目顯示

研究生: 劉又升
Yu-sheng Liu
論文名稱: 岩坡傾倒破壞之工程行為探討
Study of The Failure Behavior of Rock Toppling
指導教授: 陳志南
Chee-nan Chen
口試委員: 林志明
Chih-ming Lin
林志森
Chih-sen Lin
陳堯中
Yao-chung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 岩坡傾倒破壞
外文關鍵詞: rock slope, toppling failure
相關次數: 點閱:208下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究對一組規則節理岩坡之傾倒破壞進行探討,利用二維數值分析軟體UDEC進行模擬分析。本研究依岩坡內張力破壞漸進式發展循序定出六個歷程,針對最大及最小主應力分佈及坡面上不同位置之水平及垂直位移,進行分析比較。
    此外傾倒破壞含有不連續面存在,考量節理勁度比是一個影響節理行為的重要參數,故本研究選定三種不同節理勁度比kn/ks (5/1、10/1、20/1),配合三種陡峭節理傾角 (60°、70°、80°)來探討傾倒破壞之工程行為。研究結果顯示這些組合情況下之通過坡趾張力破壞發展均朝垂直於節理之方向延伸,而最陡之80°傾角,張力裂縫會先在坡面與通過坡頂之節理面範圍內之張力裂縫帶會上下變厚後才持續向後延伸。


    This study focuses on the toppling failure in the regular joint using the two-dimensional simulation program, UDEC. Six steps of phase were selected based on the tensile failure development of rock slope. The comparisons of the distribution of maximum and minimum stress as well as the displacement in vertical and horizontal direction were mainly discussed.
    Since the discontinuities cause toppling failure, considering the joint stiffness is one of the most important parameters to affect the joint behavior, therefore, this study selected three different joint stiffness ratio (kn/ks=5/1, 10/1 and 20/1) with three steep dipping dip angles of joint (60°,70° and 80°) to analyze discuss the engineering behavior of toppling failure. The analytical results show that in these select conditions, tensile failures developed through the slope toe tend to extend toward the perpendicular direction of joints. Especially for the steepest dipping of joint (α=80°), the development of tensile crack first occurs in the range of the slope surface and the joints of slope crest, then the tension fracture zones start to extend again after it becomes thicker.

    論文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究內容與流程 3 第二章 文獻回顧 5 2.1 傾倒破壞之類型 5 2.1.1陡峭岩坡傾倒之類型 6 2.1.2次要傾倒之類型 8 2.2岩石材料之力學行為 10 2.2.1均質岩石之力學行為 10 2.2.2節理岩石材料之力學行為 11 2.2.3節理勁度之評估公式 13 2.2.4節理組數對岩體強度之影響 15 2.3 單一塊體之傾倒理論 16 2.4傾倒破壞之立體投影圖分析 19 2.5 傾倒破壞之模擬與分析 20 2.5.1物理模型(physical model) 20 2.5.2極限平衡法(limit equilibrium method) 21 第三章 分析方法說明 23 3.1 UDEC程式的發展與理論背景 24 3.2 UDEC之行為模式 27 3.2.1塊體之組合律模式 27 3.2.2節理之組合律模式 30 3.3 UDEC基本術語定義 33 3.4 分析流程簡介 36 3.4.1分析架構及輸入指令 36 3.4.2實際分析步驟 38 3.4.3符號說明 39 3.5二維數值分析模式建置 40 3.5.1數值分析模式 40 3.5.2數值分析網格建立 40 3.5.3完整岩石參數 42 3.5.4節理參數 46 3.6數值分析運算時階 48 第四章 一組規則節理岩坡之傾倒破壞 50 4.1 利用UDEC進行傾倒破壞之相關研究 50 4.2 傾倒之漸進式破壞歷程 51 4.3 傾倒破壞之主應力分佈探討 57 4.3.1 傾倒破壞於坡趾處之應力探討 63 4.4 傾倒破壞於坡面之位移探討 64 4.4.1 傾倒之坡面位移探討 64 4.5三種不同節理勁度比kn/ks (5/1、10/1、20/1)對傾倒破壞比較 67 4.5.1 三種不同節理勁度比對傾倒破壞之塑性區影響 67 4.5.2三種不同節理勁度比之坡面位移變化比較 70 4.5.3三種不同節理勁度比之張力破壞長度與坡頂位移比較 77 4.6 三種不同節理傾角 (60°、70°、80°)對傾倒破壞比較 79 4.6.1三種不同節理傾角之塑性區變化比較 79 4.6.2三種不同節理傾角之坡面位移變化比較 82 4.6.3三種不同節理傾角之張力破壞長度與坡頂位移比較 87 第五章 結論與建議 89 5.1結論 89 5.2建議 91 參考文獻 93 附錄 96 附錄A: 節理勁度比kn/ks (5/1、20/1)漸進式破壞歷程 97 附錄B: 節理傾角 ( 60°、70° )漸進式破壞歷程 103

    1.Adhikary, D.P., Dyskin, A.V., Jewell, R.J., “A study of the mechanism of flexural toppling failure of rock slopes,” Rock Mechanics and Rock Engnineering, Vol.30, No.2, pp. 75-93, (1997).
    2.Barton, N.R., Bandis, S. and Bakhtar, K. “Strength deformation and conductivity coupling of rock joints,” International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstract, Vol.22, pp. 121-140, (1985).
    3.Goodman, R.E., “The Deformability of Joints Deformation of the In-Situ Modulus of Deformation of Rock,” ASTM, STP 477, pp. 174-196, (1970).
    4.Goodman, R. E., and Bray, J.W.,“Toppling of Rock Slope,” Proc. of Specialty Conference on Rock Engineering for Foundations and Slopes, ASCE, Boulder Colorado, Vol. 2, pp. 201-234, (1976).
    5.Goodman, R. E. “Introduction to Rock Mechanics,” 2nd Ed., Chap. 6, pp. 101~140, John Wiley&Sons, (1989).
    6.Goodman, R. E. “Introduction to Rock Mechanics, ” 2nd Ed., Chap. 8, pp.293~339, John Wiley&Sons, (1989).
    7.Goricki, A, and Goodman, R.E. “Failure models of rock slopes demonstrated with base friction and simple numerical models,” Felsbau, Vol.21, No2, pp8-12, (2003).
    8.Hoek, E., and Bray, J. W., “Rock slope engineering, ” 3rd Ed., Inst. of Mining and and Metallurgy, London, (1981).
    9.Hoek, E. & Brown, E.T., “Underground Excavation in Rock,” Revised First Ed., pp.87-182, (1982).
    10.Itasca Consulting Group. UDEC (Universal Distinct Element Code) Version 3.0. Minneapolis, MN, (1997).
    11.Jaeger, J.C., “Shear Failure of Anisotropic Rock,” Geo. Mag., 97, pp. 65-72, (1960).
    12.Kulitilake, P.H., Ucpirti, S.W., Wang, H.S., Radberg, G. Stephansson, O.,” Use of the Distinct Element Method to Perform Stress Analysis in Rock with Non-persistent Joints and to Study the Effect of Joint Geometry Parameters on the Strength and Deformability of Rock Masses,” Rock Mechanics and Rock Engineering , Vol.25, No.4, pp. 253-274, (1992).
    13.Lama, R.D. and Vutukuri V.S., “Hand Book on Mechanical Properties of Rock,” Trans Tech Publications, Germany (1978).
    14.Sjoberg, J., “Analysis of Large Scale Rock Slopes,” Doctoral thesis, Department of Civil and Mining Engineering, Lulea University of Technology, Sweden, (1999).
    15.Yoshinaka, R., Yamabe, T., “Joint Stiffness and the Deformation Behavior of Discontinuous Rock,” Int.J.Rock. Mech.Min.Sci & Geomech.Abstr, Vol.23, No.1, pp. 19-28, (1986).
    16.Zhang, J. H., Chen, Z. Y.,Wang, X. G., Han, L. B., “Stability of a Toppling Slope,” In: Proc., Int. Conference Centrifuge 98, Vol.1, Balkema, Rotterdam, pp. 621-626, (1998).
    17.邱昶瀚,「陡峭岩坡之傾倒機制探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2012)。

    18.陳俐穎,「節理分佈與傾角變化對基礎底面與其下方岩盤之應力與變形探討」,碩士論文,國立台灣科技大學營建工程研究所,臺北,(2010)。
    19.鄭富書、朱家德、黃燦輝,「台灣一些軟弱岩石的工程性質」,岩盤工程研討會,第259-267頁,中壢中央大學,(1994)。

    QR CODE