簡易檢索 / 詳目顯示

研究生: 吳忠達
Zhong-Da Ww
論文名稱: 應用於非侵入式血糖量測系統之 28 – 30 GHz 接收機
28 – 30 GHz CMOS Receiver for Non-Invasive Glucose Measurement System
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 邱弘緯
Hung-Wei Chiu
姚嘉瑜
Chia-Yu Yao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 43
中文關鍵詞: 非侵入式血糖量測
外文關鍵詞: non-invasive blood glucose measurement
相關次數: 點閱:120下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

應用於非侵入式血糖量測系統之28 – 30 GHz 接收機使用台積電 90 nm CMOS製程。非侵入式血糖量測系統由操作在28至30 GHz的發射機、接收機和印刷電路板探針組成。透過毫米波通過不同的血糖濃度的仿生組織造成不同的衰減來判斷血糖值之差異。仿生組織的成分使用參考文獻所提出並透過儀器量測確認其與人體相似度。28 – 30 GHz 之訊號由發射機生成,通過PCB probe將訊號傳送到仿生組織後,部分訊號由仿生物吸收,其餘訊號透過另一PCB probe由接收機接收。接收機處理訊號後並輸出10位元的數位輸出來得知血糖濃度。此接收機由高頻前端電路與基頻後端電路組成,功耗分別為26.16 mW與5.04 mW,晶片面積分別為1.26 mm2與1.27 mm2,總功耗為32.64 mW。


A 28-30 GHz CMOS receiver is designed and implemented using 90-nm CMOS technology for non-invasive glucose sensing system. The non-invasive blood glucose measurement system consists of a transmitter, receiver and PCB probes and operating at 28 to 30 GHz. Different attenuation is caused by the phantom with different glucose concentrations through millimeter waves to determine the difference glucose concentrations. The construction of the phantom is proposed by reference and measured through instruments. The transmitter delivers the 28 − 30 GHz signal to the phantom via the PCB probe. Part of the signal is absorbed by the phantom while the rest of the signal passes through the phantom to be received by the receiver via the other PCB probe. The signal is processed by the receiver and generate a 10-bit digital output to determine the different glucose concentrations. The receiver is consisted of a RF front-end circuit and a baseband circuit, the power consumption is 26.16 mW and 5.04 mW respectively, the chip area is 1.26 mm2 and 1.27 mm2 respectively, and the total power consumption is 32.64 mW.

Table of Contents 摘要 I Abstract II 誌謝 III Table of Contents V List of Figures VII List of Tables X Chapter 1 : Introduction 1 1.1 Background and Motivation 1 Chapter 2 : Mimicking Phantom 2 2.1 Structure of Mimicking Phantom 2 Chapter 3 : System Architecture 7 3.1 System Illustration Diagram 7 3.2 System Requirement and Receiver Block Diagram 8 3.3 Receiver Circuit Design 9 3.3.1 Low Noise Amplifier (LNA) 9 3.3.2 Down-Conversion Mixer 10 3.3.3 Voltage-Controlled Oscillator (VCO) 12 3.3.4 Programmable-Gain LPF (PGA) 13 3.3.5 Peak Detector (PD) 15 3.3.6 10-bit SAR ADC 15 3.4 Simulation Results of Receiver 17 3.4.1 Low Noise Amplifier (LNA) 17 3.4.2 Down-Conversion Mixer 22 3.4.3 Voltage-Controlled Oscillator (VCO) 26 3.4.4 RF front-end 26 3.4.5 Programmable-Gain LPF (PGA) 27 3.4.6 Peak Detector (PD) 29 3.4.7 10-bit SAR ADC 31 Chapter 4 : Measurement Result 32 4.1 Receiver Measurement Results 32 4.1.1 RF front-end 32 4.1.2 Analog Baseband 36 Chapter 5 : Conclusion 41 Reference 42

[1] C. Sreenivas and S. Laha, "Compact Continuous Non-Invasive Blood Glucose Monitoring using Bluetooth," 2019 IEEE Bio-medical Circuits and Systems Conference (BioCAS), 2019.
[2] S. Deepthi, N. S. Valke, J. P. Parvathy, A. K. Sai and G.Sajjan, "Non-invasive Blood Glucose Measurement System,"2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), 2019.
[3] S. Sahaet al., "Evaluation of the sensitivity of transmission measurements at millimeter waves using patch antennas for non-invasive glucose sensing" 2016 10th European Conference on Antennas and Propagation (EuCAP), 2016.
[4] P. H. Siegel, Y. Lee and V. Pikov, "Millimeter-wave non-invasive monitoring of glucose in anesthetized rats," 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Tucson, AZ, 2014
[5] 張智宇, “應用於非侵入式血糖儀之毫米波發射機晶片與印刷電 路板探針”, 國立臺灣科技大學電機所碩士論文, Jan. 2021.
[6] F. Wang, "Microwave-based non-invasive blood glucose levels monitoring using flexible UWB antennas," 12th European Conference on Antennas and Propagation (EuCAP 2018), London, 2018, pp. 1-4.
[7] T. Yilmaz, R. Foster and Y. Hao, "Broadband Tissue Mimicking Phantoms and a Patch Resonator for Evaluating Noninvasive Monitoring of Blood Glucose Levels," in IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, pp. 3064-3075, June 2014.
[8] D.Andreuccetti, R.Fossi and C.Petrucci: An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. IFAC-CNR, Florence (Italy), 1997. Based on data published by C.Gabriel et al. in 1996. [Online]. Available: http://niremf.ifac.cnr.it/tissprop/.
[9] T S.C. Shin, Ming-Da Tsai, Ren-Chieh Liu, K. -Y. Lin and H. Wang, "A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 μm CMOS technology," in IEEE Microwave and Wireless Components Letters, vol. 15, no. 7, pp. 448-450, July 2005.
[10] Z. Cheng, P. Zhou, J. Li and S. Zhang, "An Improved Current Bleeding Mixer Based on CMOS Technology," 2010 International Conference on Communications and Mobile Computing, 2010.
[11] S. Kumaravel, B. Venkataramani, S. Rishi, V. S. Vijay and B. Shailendra, "An enhanced folded cascode OTA with push pull input stage," International Multi-Conference on Systems, Signals & Devices, 2012.
[12] Seok-Bae Park, J. E. Wilson and M. Ismail, "The CHIP - Peak Detectors for Multistandard Wireless Receivers," in IEEE Circuits and Devices Magazine, vol. 22, no. 6, pp. 6-9, Nov.-Dec. 2006.
[13] C. Liu, S. Chang, G. Huang and Y. Lin, "A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010
[14] Z. -D. Wu, C. -Y. Chang, H. -C. Chen and T. -y. Lin, "Specification Development for Millimeter- Wave Absorption-Based Non-Invasive Glucose System," 2021 International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB), 2021.
[15] 李子帆, “非侵入式血糖量測系統”, 國立臺灣科技大學電機所碩士論文, Jan. 2020.

無法下載圖示 全文公開日期 2025/01/31 (校內網路)
全文公開日期 2025/01/31 (校外網路)
全文公開日期 2025/01/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE