簡易檢索 / 詳目顯示

研究生: 余陞豪
Sheng-hao Yu
論文名稱: 環對苯雙烯之合成及性質鑑定
Synthesis and Characterization of Cyclophanedines
指導教授: 游進陽
Chin-yang Yu
口試委員: 邱顯堂
Hsien-tang Chiu
游進陽
Chin-yang Yu
堀江正樹
Masaki Horie
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 212
中文關鍵詞: 環對苯雙烯環雙烯環張力
外文關鍵詞: cyclophanediene, dithiacyclophane
相關次數: 點閱:112下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的主要合成含有辛烷氧基之四取代環對苯雙烯、環對萘雙烯和不對稱結構之環對萘苯雙烯分子,並對這些具有環張力性質之單體進行基本結構鑑定。以上三個單體可利用其前驅物:dithiacyclophanes、dithianaphthalenephanes 與 dithianaphthalene cyclophanes經由分子內重排及氧化反應,最後進行熱分解而製得環雙烯單體,其非鏡像立體異構物(pseudo germinal與pseudo ortho form)可經由管柱層析法或再結晶進行分離。最後藉由核磁共振儀(NMR)、質譜(Mass)和愛克斯射線單晶繞射儀(single crystal)證明這些單體結構,且這些非鏡像立體異構物的單晶結構一致顯示了芳香環是強烈被扭曲的且具有高水準的環張力。


    The aim of this thesis was to synthesize and characterization of tetraoctyloxy substituted [2.2]paracyclophane-1,9-dienes, tetraoctyloxy substituted [2.2]paranaphthalenephane-1,9-dienes and tetraoctyloxy substituted [2.2]naphthalene paracyclophane-1,9-dienes based monomers. The three monomers can be prepared in three steps from dithia[3.3]paracyclophanes, dithia[3.3]paranaphthalenephane or dithia[3.3]naphthalene paracyclophanes. A mixture of pseudo-geminal and pseudo-ortho diastereomers is produced and the pure compounds by column chromatography and recrystallization. We can determine their structure is right from NMR, Mass and X-ray crystal structure. The solid state structures of these diastereomers reveal strongly distorted aromatic rings consistent with high levels of ring strain.

    Chapter 1. Introduction and Aims 1 1.1 Introduction 2 1.2 Introduction to paracyclophanes 2 1.2.1 Cyclophanes 2 1.1.2 [2.2]paracyclophane-1,9-diene 4 1.1.3 X-ray crystal structure of [2.2]paracyclophanes 5 1.3 Ring opening metathesis polymerization 7 1.3.1 Monomers for ROMP 9 1.3.2 Catalysts for ROMP 9 1.3.2 Polymers through ROMP 11 1.4 Aims of the project 14 1.5 References 15 Chapter 2. Synthesis and Characterisation of Cyclophanediene-Based Monomers 18 2.1 Synthesis and characterization 19 2.1.1 Tetraoctyloxy substituted paracyclophanediene 19 2.1.2 Tetraoctyloxy substituted paranaphthalenephandiene 27 2.1.3 Tetraoctyloxy substituted [2.2]naphthalene paracyclophane diene 35 2.2 References 48 Chapter 3. Conclusions and Future Investigations 49 3.1 Conclusions 50 3.2 Future Investigations 50 Chapter 4. Experimental 52 4.1 General procedures 53 4.2 Synthesis 53 4.2.1 Synthesis of tetraoctyloxy substituted paracyclophanediene 54 4.2.1.1 Synthesis of 1,4-dioctyloxybenzene (1.1) 54 4.2.1.2 Synthesis of 2,5-bis(bromomethyl)-1,4-dioctyloxybenzene (1.2) 54 4.2.1.3 Synthesis of 2,5-bis(thiolatomethyl)-1,4-dioctyloxybenzene (1.3) 55 4.2.1.4 Synthesis of 5,8,14,17-tetraoctyloxy-2,11-dithia[3.3]paracyclophane (1.4a) and 6,9,14,17-tetraoctyloxy-2,11-dithia [3.3]paracyclophane (1.4b) 56 4.2.1.5 Synthesis of compound (1.5) 57 4.2.1.6 Synthesis of compound (1.6) 57 4.2.1.7 Synthesis of 4,7,12,15-tetraoctyloxy-[2.2]paracyclophane-1,9 -diene (1.7a) and 5,8,12,15-tetraoctyloxy-[2.2]paracyclophane-1,9 -diene (1.7b) 58 4.2.2 Synthesis of tetraoctyloxy substituted paranaphthalene phan- diene 59 4.2.2.1 Synthesis of 2,6-Dibromo-1,5-dithydroxynaphthalene (2.1) 59 4.2.2.2 Synthesis of 2,6-bis(bromomethyl)-1,5-bis(octyloxy)naphthalene (2.2) 60 4.2.2.3 Synthesis of 1,5-bis(octyloxy)naphthalene-2,6-dicarbaldehyde (2.3) 60 4.2.2.4 Synthesis of 1,5-bis(octyloxy)naphthalene-2,6-dihydroxymethyl (2.4) 61 4.2.2.5 Synthesis of 2,6-bis(bromomethyl)-1,5-bis(octyloxy)naphthalene (2.5) 62 4.2.2.6 Synthesis of 2,6-bis(thiolatomethyl)-1,5-bis(octyloxy)naphthalene (2.6) 62 4.2.2.7 Synthesis of 5,9,16,20-tetraoctyloxy-2,11-dithia[3.3] paranaphthalenephane (2.7) 63 4.2.2.8 Synthesis of compound (2.8) 64 4.2.2.9 Synthesis of compound (2.9) 65 4.2.2.10 Synthesis of 4,8,14,18-tetraoctyloxy-[2.2]paranaphthalenephane-1,11- diene (2.10a) and 4,8,16,20-tetraoctyloxy-[2.2]paranaphthalenephane- 1,11-diene (2.10b) 65 4.2.3 Tetraoctyloxy substituted [2.2]naphthalene paracyclophane- diene 67 4.2.3.1 Synthesis of 5,9,16,19-tetraoctyloxy-2,13-dithia[3.3]naphthalene paracyclophane (3.1a) and 5,9,17,20-tetraoctyloxy-2,13-dithia [3.3]naphthalene paracyclophane (3.1b) 67 4.2.3.2 Synthesis of compound (3.2) 68 4.2.3.3 Synthesis of compound (3.3) 69 4.2.3.4 Synthesis of 4,8,14,17-tetraoctyloxy-[2.2]naphthalene paracyclophane-1,11-diene (3.4a) and 4,8,15,18-tetraoctyloxy- [2.2]naphthalene paracyclophane- 1,11-diene (3.4b). 70 Appendix. 72 1. 1H, 13C NMR and Mass spectrum 72 2. Single crystals X-ray crystallography 99

    [1] Y. Morisaki, Y. Shiotani, L. Lin, Y. Chujo, Polym. J. 2008, 40, 779.
    [2] I. Pischel, M. Nieger, A. Archut, F. Vogtle, Tetrahedron 1996, 52, 10043.
    [3] D. J. Cram, H. Steinberg, J. Am. Chem. Soc. 1951, 73, 5691.
    [4] H. Higuchi, K. Tani, T. Otsubo, Y. Sakata, S. Misumi, Bull. Chem. Soc. Jpn. 1987, 60, 4027.
    [5] J. Bruhin, W. Kneubuhler, W. Jenny, Chimia. 1973, 27, 277.
    [6] F. Vogtle, L. Rossa, Angew. Chem. Int. Ed. Engl. 1979, 18. 515.
    [7] C. J. Brown, A. C. Farthing, Nature 1949, 164, 915.
    [8] M. Staebbe, O. Reiser, T. Thiemann, R. G. Daniels, A. de Meijere, Tetrahedron Lett. 1986, 27, 2353.
    [9] K. C. Dewhirst, D. J. Cram, J. Am. Chem. Soc. 1958, 80, 3115.
    [10] M. Montanari, A. Bugana, A. K. Sharma, D. Pasini, Organic & Biomolecular Chemistry 2011, 9, 5018.
    [11] H. Hope, J. Bernstein, K.N. Trueblood, Acta Cryslullogr. Sect. B 1972, 28, 1733.
    [12] C. L. Coulter, K. N. Trueblood, Acta Crystallogr 1963, 16, 667.
    [13] J. Bruhin, F. Gerson, R. Mockel, G. Plattner, Helvetica Chimica Acta 1985, 68, 377.
    [14] C.-Y. Yu, M. Helliwell, J. Raftery, M. L. Turner, Chemistry-A European Journal 2011, 17, 6991.
    [15] C. W. Bielawski, R. H. Grubbs, Polym. Sci. 2007, 32, 1.
    [16] B. M. Novak, W. Risse, R. H. Grubbs. Adv Polym Sci. 1992, 102, 47.
    [17] G. Dall’Asta. Rubber Chem Technol 1974, 47, 511.
    [18] R. H. Grubbs. Angew. Chem. Int. Ed. 2006, 45, 3760.
    [19] S. Sutthasupa, M. Shiotsuki, F. Sanda, Polym J. 2010, 42, 905.
    [20] S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. O’Neal, A. S. Rodgers, R. Walsh. Chem. Rev. 1969, 69, 279.
    [21] B. M. Novak, R. H. Grubbs. J. Am. Chem. Soc. 1988, 110, 960.
    [22] T.-L. Choi and R. H. Grubbs, Angew. Chem. Int. Ed. 2003, 42, 1743.
    [23] M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs. Org. Lett. 1999, 1, 953.
    [24] A. K. Chatterjee, J. P. Morgan, M. Scholl, R. H. Grubbs, J. Am. Chem. Soc. 2000, 122, 3783.
    [25] M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1, 953.
    [26] J. A. Love, J. P. Morgan, T. M. Trnka, R. H. Grubbs, Angew.Chem. Int. Ed. 2002, 41, 4035.
    [27] J. A. Love, M. S. Sanford, M. W. Day, R. H. Grubbs, J. Am. Chem. Soc. 2003, 125, 10103.
    [28] T. L. Choi, R. H. Grubbs, Angew. Chem. Int. Ed. 2003, 42, 1743.
    [29] R. R. Schrock. Acc Chem Res. 1990, 23, 158.
    [30] R. H. Grubbs. Wiley-VCH: Weinheim, Germany, Handbook of Metathesis 2003.
    [31] K. Matyjaszewski. Macromolecules 1993, 26, 1787.
    [32] D. C. Bott, C. S. Brown, C. K. Chai, N. S. Walker, W. J. Feast, P. J. S. Foot, et al., Synth. Met. 1986, 14, 245-269.
    [33] S. Karabulut, Polym. J. 2009, 41, 629.
    [34] W.A. Little, Phys. Rev. 1964, 134, 1416.
    [35] H. Naarmann, Angew. Makromol. Chem. 1982, 110, 295.
    [36] J. H. Burroughes, D. D. C. Bradley, AR. Brown, RN. Marks, K. Mackay, R. H. Friend, , P. L. Bums, , AB. Holmes, , Nature, 1990, 347, 539.
    [37] Y. J. Miao, G. C. Bazan, J. Am. Chem. Soc. 1994, 116, 9379.
    [38] L. Pu, M. Wagaman, R.H. Grubbs, Macromolecules, 1996, 29, 1138.
    [39] K. J. Ivin, Olefn Metathesis, 1983.
    [40] C. B. Gorman, E. J. Ginsburg, M. J. Sailor, J. S. Moore, T. H. Jozefiak, N. S. Lewis, R. H. Grubbs, Synth. Met. 1991, 1033, 41.
    [41] J. S. Moore, C. B. Gorman, R. H. Grubbs, J. Am. Chem. Soc. 1991, 113, 1704.
    [42] E. Thorn-Csanyi, K. P. Pflug, Die Makromolekulare Chemie, 1993, 194, 2287.

    [1] Y. Zhang, W. Zhu, W. Wang, H. Tian, J. Su, and W. Wang, Journal of Materials Chemistry 2002, 12, 1294.
    [2] M. a. J. Gomez-Escalonilla, F. Langa, J.-M. Rueff, L. Oswald, J. F. Nierengarten, Tetrahedron Letters 2002, 43, 7507.
    [3] I. Pischel, M. Nieger, A. Archut, F. Vogtle, Tetrahedron 1996, 52, 10043.
    [4] M. Montanari, A. Bugana, A. K. Sharma, D. Pasini, Organic & Biomolecular Chemistry 2011, 9, 5018.
    [5] C.-Y. Yu, M. Helliwell, J. Raftery, M. L. Turner, Chemistry – A European Journal 2011, 17, 6991.
    [6] A. S. Wheeler, D. R. Ergle, J. Am. Chem. Soc. 1930, 52, 4872.
    [7] J. H. Kwon, J. Y. An, H. Jang, S. Choi, D. S. Chung, M. J. Lee, et al, Journal of Polymer Science Part A: Polymer Chemistry 2011, 49, 1119.
    [8] S. Gonzalez, N. Martin, J. Segura, and C. Seoane, Tetrahedron Letters 1998, 39, 3051.
    [9] J. L. Segura, N. Martin, M. Hanack, European Journal of Organic Chemistry 1999, 1999, 643.
    [10] M. Haenel, H. A. Staab, Chemische Berichte 1973, 106, 2203.
    [11] M. W. Haenel, Chemische Berichte 1982, 115, 1425.

    無法下載圖示 全文公開日期 2018/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE