簡易檢索 / 詳目顯示

研究生: HUYNH TAN THANH
HUYNH - TAN THANH
論文名稱: PdxNiy Bimetallic Nanocatalysts for Green Production of Hydrogen Peroxide
PdxNiy Bimetallic Nanocatalysts for Green Production of Hydrogen Peroxide
指導教授: 黃炳照
Bing-Joe Hwang
林昇佃
Shawn D. Lin
口試委員: 蘓威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 113
外文關鍵詞: green process, palladium-nickel
相關次數: 點閱:430下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過氧化氫(雙氧水)為對環境友善之工業用氧化劑。近期,鈀(Pd)與鈀金(PdAu)觸媒由於具有高選擇性與活性,吸引廣泛的注意。然而,昂貴黃金的使用限制其在工業上的廣泛應用。因此,研究上替代之催化金屬取代雙金屬中的黃金。
    本研究將開發 PdxNiy鈀鎳雙金屬奈米觸媒於雙氧水之綠色合成。本研究發展一新穎擔體承載之觸媒於雙氧水直接合成反應。由於其鎳的價格遠低於金,因此被選為雙金屬的催化系統。首先,實驗分別採用硼氫化納(NaBH4)與氫氣來還原含鈀離子與鎳離子之前趨物,但結果顯示前者無法順利還原鎳離子,後者則無法在碳載體上將兩者還原成合金結構。
    鑑此,考量觸媒需要高表面積與在酸性環境下之穩定性,本研究將利用酸處理後之碳與中孔碳在為載體。研究發現PdxNiy的雙金屬合金原本具有面心立方(face-centered cubic)的結構,在經過還原熱處理後轉變為面心四方(face-centered tetragonal)的結構。此有序結構之產生經證實可提高觸媒結構於酸性溶液下之穩定性與其產生雙氧水之活性。


    It is well-known that hydrogen peroxide is a highly versatile environmentally friendly industrial oxidant. Recently, palladium and bimetallic palladium gold catalysts have come to prominence, due to their high selectivity and activity. However, the high cost of gold both limits their wide application in industry and at the same time fuels research into alternative catalytic metals able to replace gold in bimetallic catalysts.
    This study focuses on PdxNiy bimetallic nanocatalysts for green production of hydrogen peroxide. In this work a new supported catalyst for the direct synthesis of hydrogen peroxide was developed. Nickel has been adopted as the catalytic candidate due to its low cost compared to gold. Two main approaches were taken to synthesize PdxNiy nanocatalysts. NaBH4 and H2 were applied as a reductive agent to reduce Pd2+ and Ni2+ in precursors to form bimetallic PdxNiy on pretreated-carbon, respectively. However, the analysis results show that NaBH4 was not able to reduce Ni2+, and the H2 reduction method cannot achieve desired interaction between nanocatalysts and support. Thus, mesoporous carbon support and the organic agent reduction method were further developed for the synthesis of bimetallic nanocatalysts which were characterized by the crystallographic face-centered-cubic structure.
    Next, it is demonstrated that the alloy crystal structure of PdxNiy alloy can be arranged into the face-centered tetragonal (fct) structure after hydrogen treatment. Attributed to the ordered structure, the fct- PdxNiy catalyst found in this study enhances not only structural stability but also productivity with respect to the direct synthesis of hydrogen peroxide.

    CHAPTER 1. INTRODUCTION 1 1.1. General Aspects and Uses of Hydrogen Peroxide 1 1.1.1. General aspects 1 1.1.2. Widespread application of hydrogen peroxide 2 1.2. The Production of Hydrogen Peroxide 4 1.3. About direct synthesis of Hydrogen Peroxide 7 1.4. Motivation 9 CHAPTER 2. LITERATURE REVIEW 11 2.1. Catalyst used in direct synthesis of Hydrogen Peroxide from Hydrogen and Oxygen 11 2.1.1. Direct synthesis of Hydrogen Peroxide in Pd-M bimetallic. 12 2.1.2. Direct synthesis of Hydrogen Peroxide in Pd-M bimetallic supported on pre-treated Carbon 15 2.1.3. Direct synthesis of Hydrogen Peroxide in Pd-M bimetallic catalysts by controlling crystal structure 19 2.2. Synthesis of Alloy PdNi/C Nanoparticles 21 2.3. Synthesis of Alloy Pd-M/C Nanoparticles with face center tetragonal 22 2.4. X-ray Absorption Spectroscopy 23 2.5. Electrochemical measurement for Hydrogen Peroxide Detection with rotating ring dish electrode 26 2.5.1. Collection efficiency of rotating ring disk electrode 29 2.5.2. Electrochemical measurement 29 CHAPTER 3. EXPERIMENTAL PROCEDURE 35 3.1. Materials and Equipment. 35 3.2. Methods for synthesis of Pd-Ni bimetallic catalysts 38 3.2.1. Direct Synthesis of PdNi alloy by using NaBH4 as a reducing agent 38 3.2.2. Direct Synthesis of PdNi alloy by using Hydrogen reduction 40 3.2.3. Direct synthesis of PdNi alloy on SBA-15 mesoporous support 43 3.3. Physical characterization of Catalysts 46 3.3.1. Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP – AES) 46 3.3.2. X-Ray Diffraction (XRD) 49 3.3.3. Field Emission Scanning Electron Microscope (FESEM) 51 3.3.4. TEM 52 3.4. Electrochemical measurement to detection Hydrogen Peroxide 54 CHAPTER 4. RESULTS & DISCUSSION 58 4.1. Catalyst characterization 58 4.1.1. XRD 58 4.1.2. XAS 64 4.1.3. ICP – AES 70 4.2. Surface property 72 4.2.1. SEM 72 4.2.2. TEM 75 4.3. Electrochemical measurement 79 4.3.1. Calibration curve 79 4.3.2. Reaction system 82 CHAPTER 5. CONCLUSION 93 REFERENCES 95

    1. K.-O.E.o.C. Technology. HYDROGEN PEROXIDE. Copyright John Wiley & Sons [cited 13; Available from: www.http://en.wikipedia.org/wiki/Hydrogen_peroxide.
    2. B. Puertolas, A.K. Hill, T. Garcia, B. Solsona, and L. Torrente-Murciano, In-situ synthesis of hydrogen peroxide in tandem with selective oxidation reactions: A mini-review. Catalysis Today, (0).
    3. J.M. Campos-Martin, G. Blanco-Brieva, and J.L.G. Fierro, Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process. Angewandte Chemie International Edition, 2006. 45(42): p. 6962-6984.
    4. Hydrogen Peroxide: A Global Strategic Business Report. 2012 March 09, 2012 [cited 2015 January 10]; Available from: http://www.prweb.com/releases/hydrogen_peroxide/bleaching_pulp_paper/prweb9268178.htm.
    5. S. Park, S.-H. Baeck, T.J. Kim, Y.-M. Chung, S.-H. Oh, and I.K. Song, Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on SO3H-functionalized mesoporous silica. Journal of Molecular Catalysis A: Chemical, 2010. 319(1–2): p. 98-107.
    6. e.a. Pierdomenico Biasi, Hydrogen Peroxide Direct Synthesis: Enhancement of Selectivity and Production with non-Conventional Methods. AIDIC, 2013. 32: p. 673-678.
    7. C. Samanta, Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process. Applied Catalysis A: General, 2008. 350(2): p. 133-149.
    8. W. Ratchananusorn, D. Gudarzi, and I. Turunen, Catalytic direct synthesis of hydrogen peroxide in a novel microstructured reactor. Chemical Engineering and Processing: Process Intensification, 2014. 84(0): p. 24-30.
    9. T.M. Rueda, J.G. Serna, and M.J.C. Alonso, Direct production of H2O2 from H2 and O2 in a biphasic H2O/scCO2 system over a Pd/C catalyst: Optimization of reaction conditions. The Journal of Supercritical Fluids, 2012. 61(0): p. 119-125.
    10. Y.-F. Han and J.H. Lunsford, Direct formation of H2O2 from H2 and O2 over a Pd/SiO2 catalyst: the roles of the acid and the liquid phase. Journal of Catalysis, 2005. 230(2): p. 313-316.
    11. C. Samanta and V.R. Choudhary, Direct formation of H2O2 from H2 and O2 and decomposition/hydrogenation of H2O2 in aqueous acidic reaction medium over halide-containing Pd/SiO2 catalytic system. Catalysis Communications, 2007. 8(12): p. 2222-2228.
    12. V.R. Choudhary, C. Samanta, and P. Jana, Decomposition and/or hydrogenation of hydrogen peroxide over Pd/Al2O3 catalyst in aqueous medium: Factors affecting the rate of H2O2 destruction in presence of hydrogen. Applied Catalysis A: General, 2007. 332(1): p. 70-78.
    13. E.N. Ntainjua, M. Piccinini, J.C. Pritchard, J.K. Edwards, A.F. Carley, C.J. Kiely, and G.J. Hutchings, Direct synthesis of hydrogen peroxide using ceria-supported gold and palladium catalysts. Catalysis Today, 2011. 178(1): p. 47-50.
    14. R. Dittmeyer, J.D. Grunwaldt, and A. Pashkova, A review of catalyst performance and novel reaction engineering concepts in direct synthesis of hydrogen peroxide. Catalysis Today, (0).
    15. J.K. Edwards, B.E. Solsona, P. Landon, A.F. Carley, A. Herzing, C.J. Kiely, and G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au–Pd catalysts. Journal of Catalysis, 2005. 236(1): p. 69-79.
    16. M. Okumura, Y. Kitagawa, K. Yamagcuhi, T. Akita, S. Tsubota, and M. Haruta, Direct Production of Hydrogen Peroxide from H2 and O2 over Highly Dispersed Au catalysts. Chemistry Letters, 2003. 32(9): p. 822-823.
    17. L.-K.L. Bing Zhou, Catalyst and process for direct catalystic production of hydrogen peroxide. United state patent, 2001. US6168775.
    18. M. Piccinini, J.K. Edwards, J.A. Moulijn, and G.J. Hutchings, Influence of reaction conditions on the direct synthesis of hydrogen peroxide over AuPd/carbon catalysts. Catalysis Science & Technology, 2012. 2(9): p. 1908-1913.
    19. S. Duan and R. Wang, Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications. Progress in Natural Science: Materials International, 2013. 23(2): p. 113-126.
    20. J.K. Edwards, S.F. Parker, J. Pritchard, M. Piccinini, S.J. Freakley, Q. He, A.F. Carley, C.J. Kiely, and G.J. Hutchings, Effect of acid pre-treatment on AuPd/SiO2 catalysts for the direct synthesis of hydrogen peroxide. Catalysis Science & Technology, 2013. 3(3): p. 812-818.
    21. J.K. Edwards, E. Ntainjua N, A.F. Carley, A.A. Herzing, C.J. Kiely, and G.J. Hutchings, Direct Synthesis of H2O2 from H2 and O2 over Gold, Palladium, and Gold–Palladium Catalysts Supported on Acid-Pretreated TiO2. Angewandte Chemie International Edition, 2009. 48(45): p. 8512-8515.
    22. B.E. Solsona, J.K. Edwards, P. Landon, A.F. Carley, A. Herzing, C.J. Kiely, and G.J. Hutchings, Direct Synthesis of Hydrogen Peroxide from H2 and O2 Using Al2O3 Supported Au−Pd Catalysts. Chemistry of Materials, 2006. 18(11): p. 2689-2695.
    23. S. Park, J.G. Seo, J.C. Jung, S.-H. Baeck, T.J. Kim, Y.-M. Chung, S.-H. Oh, and I.K. Song, Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalysts supported on TiO2–ZrO2 mixed metal oxides. Catalysis Communications, 2009. 10(13): p. 1762-1765.
    24. J.K. Edwards, J. Pritchard, M. Piccinini, G. Shaw, Q. He, A.F. Carley, C.J. Kiely, and G.J. Hutchings, The effect of heat treatment on the performance and structure of carbon-supported Au–Pd catalysts for the direct synthesis of hydrogen peroxide. Journal of Catalysis, 2012. 292(0): p. 227-238.
    25. P. Biasi, J. Garcia-Serna, A. Bittante, and T. Salmi, Direct synthesis of hydrogen peroxide in water in a continuous trickle bed reactor optimized to maximize productivity. Green Chemistry, 2013. 15(9): p. 2502-2513.
    26. G. Li, J. Edwards, A.F. Carley, and G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 and in situ oxidation using zeolite-supported catalysts. Catalysis Communications, 2007. 8(3): p. 247-250.
    27. J.K. Edwards, B. Solsona, E.N. N, A.F. Carley, A.A. Herzing, C.J. Kiely, and G.J. Hutchings, Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process. Science, 2009. 323(5917): p. 1037-1041.
    28. E. Antolini, Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009. 88(1–2): p. 1-24.
    29. S. Kim, D.-W. Lee, and K.-Y. Lee, Direct synthesis of hydrogen peroxide from hydrogen and oxygen over single-crystal cubic palladium on silica catalysts. Journal of Molecular Catalysis A: Chemical, 2014. 383–384(0): p. 64-69.
    30. R. Narayanan and M.A. El-Sayed, Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution. Nano Letters, 2004. 4(7): p. 1343-1348.
    31. J. Jellinek, Nanoalloys: tuning properties and characteristics through size and composition. Faraday Discussions, 2008. 138(0): p. 11-35.
    32. Z. Qi, H. Geng, X. Wang, C. Zhao, H. Ji, C. Zhang, J. Xu, and Z. Zhang, Novel nanocrystalline PdNi alloy catalyst for methanol and ethanol electro-oxidation in alkaline media. Journal of Power Sources, 2011. 196(14): p. 5823-5828.
    33. S.Y. Shen, T.S. Zhao, J.B. Xu, and Y.S. Li, Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. Journal of Power Sources, 2010. 195(4): p. 1001-1006.
    34. H. Husin, W.-N. Su, C.-J. Pan, J.-Y. Liu, J. Rick, S.-C. Yang, W.-T. Chuang, H.-S. Sheu, and B.-J. Hwang, Pd/NiO core/shell nanoparticles on La0.02Na0.98TaO3 catalyst for hydrogen evolution from water and aqueous methanol solution. International Journal of Hydrogen Energy, 2013. 38(31): p. 13529-13540.
    35. W. Wang, S. Ji, H. Wang, and R. Wang, Nanoporous PdNi/C Electrocatalyst Prepared by Dealloying High-Ni-content PdNi Alloy for Formic Acid Oxidation. Fuel Cells, 2012. 12(6): p. 1129-1133.
    36. R. Ryoo, S.H. Joo, M. Kruk, and M. Jaroniec, Ordered Mesoporous Carbons. Advanced Materials, 2001. 13(9): p. 677-681.
    37. S. Parhizgar and S. Sebt, Size distribution control of FePt nanocrystals by superhydride. Journal of Theoretical and Applied Physics, 2013. 7(1): p. 44.
    38. K.A. Kuttiyiel, K. Sasaki, D. Su, L. Wu, Y. Zhu, and R.R. Adzic, Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nat Commun, 2014. 5.
    39. R. Narayanan and M.A. El-Sayed, Catalysis with Transition Metal Nanoparticles in Colloidal Solution:  Nanoparticle Shape Dependence and Stability. The Journal of Physical Chemistry B, 2005. 109(26): p. 12663-12676.
    40. B.-J. Hwang, L.S. Sarma, J.-M. Chen, C.-H. Chen, S.-C. Shih, G.-R. Wang, D.-G. Liu, J.-F. Lee, and M.-T. Tang, Structural Models and Atomic Distribution of Bimetallic Nanoparticles as Investigated by X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2005. 127(31): p. 11140-11145.
    41. S. Alayoglu, P. Zavalij, B. Eichhorn, Q. Wang, A.I. Frenkel, and P. Chupas, Structural and Architectural Evaluation of Bimetallic Nanoparticles: A Case Study of Pt−Ru Core−Shell and Alloy Nanoparticles. ACS Nano, 2009. 3(10): p. 3127-3137.
    42. K. Lee, S.W. Kang, S.-U. Lee, K.-H. Park, Y.W. Lee, and S.W. Han, One-Pot Synthesis of Monodisperse 5 nm Pd–Ni Nanoalloys for Electrocatalytic Ethanol Oxidation. ACS Applied Materials & Interfaces, 2012. 4(8): p. 4208-4214.
    43. K. Zhang, Q. Yue, G. Chen, Y. Zhai, L. Wang, H. Wang, J. Zhao, J. Liu, J. Jia, and H. Li, Effects of Acid Treatment of Pt−Ni Alloy Nanoparticles@Graphene on the Kinetics of the Oxygen Reduction Reaction in Acidic and Alkaline Solutions. The Journal of Physical Chemistry C, 2010. 115(2): p. 379-389.
    44. X. Yang, D. Chen, S. Liao, H. Song, Y. Li, Z. Fu, and Y. Su, High-performance Pd–Au bimetallic catalyst with mesoporous silica nanoparticles as support and its catalysis of cinnamaldehyde hydrogenation. Journal of Catalysis, 2012. 291(0): p. 36-43.
    45. S. Park, T. Kim, Y.-M. Chung, S.-H. Oh, and I. Song, Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on SO3H-functionalized MCF silica: Effect of calcination temperature of mesostructured cellular foam silica. Korean J. Chem. Eng., 2011. 28(6): p. 1359-1363.
    46. G. Dunnivant, Flame Atomic Absorbance and Emisson Spectroscopy and Inductively Coupled Spectrometry - Mass Spectrometry, W. College, Editor. 2009.
    47. E.K. Hlil, R. Baudoing-Savois, B. Moraweck, and A.J. Renouprez, X-ray Absorption Edges in Platinum-Based Alloys. 2. Influence of Ordering and of the Nature of the Second Metal. The Journal of Physical Chemistry, 1996. 100(8): p. 3102-3107.
    48. J.-I. Park, M.G. Kim, Y.-w. Jun, J.S. Lee, W.-r. Lee, and J. Cheon, Characterization of Superparamagnetic “Core−Shell” Nanoparticles and Monitoring Their Anisotropic Phase Transition to Ferromagnetic “Solid Solution” Nanoalloys. Journal of the American Chemical Society, 2004. 126(29): p. 9072-9078.

    QR CODE