簡易檢索 / 詳目顯示

研究生: 張娟華
Chuan-hua Chang
論文名稱: 離子液體嵌入奈米碳管對電化學微電容器的儲能性質影響
Influences of ionic liquid intercalation in carbon nanotubes on the storage properties miniature electrochemical capacitor
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 周振嘉
Chen-chia Chou
吳溪煌
She-huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 146
中文關鍵詞: 指叉式電極奈米碳管室溫離子液體嵌入微型電化學電容器
外文關鍵詞: interdigitated electrode, Carbon nanotubes, Room temperature ionic liquid, Intercalation, miniature electrochemical capacitor
相關次數: 點閱:334下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

能量與功率值為工作電壓的平方比是眾所皆知的事情,所以工作窗口的大小極大影響電容器的儲存能力。而我們將證明合適的窗口大小不再一直是影響儲存能量的唯一原因,本次研究,我們探討離子液體[EMIM][TFSI]嵌入奈米碳管對於指叉式微型電容器的能量儲存影響。
原則上,可操作電位窗口受到電解液分解限制,離子液體[EMIM][TFSI]以白金片當電極測量可用電為範圍:-1.8  2.6 V (vs. RHE)。然而,一維奈米碳管是層狀結構,奈米碳管經受陽離子[EMIM]和陰離子[TFSI] 的嵌入,導致剝離或是管破裂,嵌入的電位範圍小於離子液體[EMIM][TFSI]分解電位。我們用循環伏安探討上界與下界電位,且以拉曼光譜解析出嵌入限制電位,嵌入的上界電位決定在1.5和1.7 V (vs. RHE)之間,下界電位決定於-1.6 和-1.7 V (vs. RHE)之間,在循環穩定分析進一步驗證嵌入的上界與下界電位的影響。
當操作電位窗口2.0 V,微型電容器充放電10000圈後的保留率約100 %,代表有很好的循環穩定性,且庫倫效率也很快提升且穩定於100 %。然而,當操作電壓設在2.8 V或3.8 V,電容器的循環穩定逐漸下降,因為電極的電位已達到離子嵌入的電位境界,且奈米碳管有部分破裂。當電容器電壓設在2.8 V,正極的電位達到嵌入的上界內,且隨著圈數增加比電容值逐漸下降,在電流密度8 A g-1充放電10000圈後,保留率為90.8 % 。另外一方面,當電容器窗口設在3.8 V,而電流密度30 A g-1充放電10000圈後,保留率為77.5 %,由於循環測定中正負極都受到並非只有正極,造成低保留率。因此,電化學電容器的循環穩定性,主要是受電壓窗口,少數影響來自於電流密度,因此兩個因素能改變的正負電極的電位界限。


It is well-known that the energy and power values of an ultracapacitor are proportional to the square of its working voltage window. The size of working window influences the storage capability tremendously. As we shall demonstrate, the answer of proper window size is not a straightforward one. In this work, we investigate the influences of ionic liquid [EMIM][TFSI] intercalation in carbon nanotubes (CNT) on energy storage of a miniature electrochemical capacitor with interdigitated electrodes.
In principle, the workable potential window is governed by decomposition potential limits of the electrolyte. For ionic liquid [EMIM][TFSI], the measured potential range with a platinum working electrode is -1.8  2.6 V (vs. RHE). Nevertheless, one-dimensional CNT is a layer structure material. [EMIM] cation and [TFSI] anion may undergo intercalation into CNT, resulting in exfoliation or tube rupture. The potential range of intercalation is narrower than the decomposition limits of ionic liquid [EMIM][TFSI]. We explore the potential upper and lower limits with cyclic voltammetry and resolve the intercalation limits with Raman spectroscopy. The upper potential limit of intercalation is determined between 1.5 and 1.7 V (vs. RHE), while the lower potential limit is decided between -1.6 and -1.7 V (vs. RHE). The upper and lower potential limits for intercalation are further validated in the cycle stability analysis.
When operated in the potential window 2.0 V, the miniature ultracapacitor was charged and discharged with excellent cycle stability, typified by a retention ratio 100% after 104 cycles. Their coulombic efficiencies quickly rise up, and hold steady at 100%. However, when the applied voltage is set at 2.8 V or 3.8 V, the cycle stability of capacitor gradually declines, because the electrode potential has reached the potential limits of ion intercalation and ruptured a fraction of CNT structure. When the capacitor window is set 2.8 V, the positive electrode potential can reach the intercalation upper limit, and the capacitance value gradually decreases with increasing cycle number. The retention ratio, after 104 cycles, is 90.8% at current density 8 A g-1. On the other hand, when the capacitor window is set 3.8 V, the capacitor energy is cycled at current density 30 A g-1, the retention ratio is only 77.5% after 104 cycles. The lower retention ration results from both of the electrodes, not just positive electrode, which experienced intercalation during energy cycling. Hence the cycle stability of this electrochemical capacitor is mainly affected by the voltage window, less influenced by the current density, since both factors can change the potential boundaries of positive and negative electrodes.

摘要 I Abstract Ⅲ 目錄 Ⅴ 圖目錄 Ⅶ 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻討論與理論基礎 5 2.1 能量儲存裝置概述 5 2.2 超高電容器 8 2.3 電極材料之奈米碳管 9 2.4 室溫離子液體電解液(RTILs) 12 2.5 離子液體應用 18 2.5.1 離子液體應用於鋰離子電池 18 2.5.2 離子液體應用於電雙層電容器 21 2.6 超高電容器之儲能及功率 24 第三章 實驗方法與步驟 26 3.1 實驗藥品耗材與儀器設備 26 3.1.1. 基材清洗與準備工作 26 3.1.2. 黃金濺鍍(Au)金屬層 26 3.1.3. 指叉式電極圖型微影/蝕刻(Photolithography)和鐵/鋁觸媒層(3/5 nm)圖案化 27 3.1.4. 沉積鐵/鋁觸媒層(3/5 Nanometer)和成長碳微管 27 3.1.5. 電容器封裝 27 3.1.6. 藥品耗材 28 3.1.7. 電化學量測設備 28 3.2 電極材料之製備 30 3.2.1 基材之清洗 30 3.2.2 黃光微影製程 (Photolithography) 30 3.2.3 CVD法成長奈米碳管 32 3.2.4 電極之轉印 34 3.2.5 試片之封裝 36 3.2.6 電容器元件量測前步驟 38 3.3 電極之特性分析與電容器特性分析 39 3.3.1 表面結構分析 39 3.3.2 電化學性質分析 39 3.3.3 拉曼光譜 40 3.3.4 傅立葉轉換紅外線 41 第四章 結果與討論 43 4.1 圖案化奈米碳管電極形貌 43 4.1.1 奈米碳管陣列形貌 43 4.1.2 反轉並移轉後的碳管陣列 46 4.2 循環伏安分析 49 4.2.1 室溫離子液體之穩定電位窗口 49 4.2.2 梳狀電極循環伏安分析 51 4.2.2.1 奈米碳管電極之循環伏安圖譜 52 4.2.2.2 電極之上界電位與下界電位循環伏安分析 56 4.3 室溫離子液體與指叉式電容器之定性分析 61 4.3.1離子液體之拉曼光譜與傅立葉轉換紅外線分析 61 4.3.1.1 離子液體之傅立葉轉換紅外線分析 61 4.3.1.2 離子液體之拉曼光譜分析 62 4.3.2 奈米碳管之拉曼分析 64 4.3.2.1 未經循環伏安之奈米碳管拉曼光譜分析 65 4.3.2.2 經歷循環伏安之奈米碳管拉曼光譜分析 67 4.3.2.3 經歷循環伏安的奈米碳管拉曼光譜之正規化拉曼光譜分析 78 4.4 恆電流充、放電分析 82 4.4.1 對稱式電容器恆電流充、放電分析 83 4.4.2 對稱式電容器充放電時各別電極之行為 93 4.4.3 充放循環穩定性分析 100 4.4.3.1 充放循環穩定性之保留率與庫倫效率分析 100 4.4.3.2 充放循環穩定性分析之能量效率分析 118 4.5 交流阻抗分析 122 第五章 結論 125 參考文獻 128

1. 胡啟章:電化學原理和方法 五南圖書出版公司出版
2. Electropaedia,” http://www.mpoweruk.com/performance.htm
3. Simon, P., and Y. Gogotsi. "Materials for Electrochemical Capacitors." Nature materials 7, no. 11 (2008): 845-854.
4. Armand, M., F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati. "Ionic-Liquid Materials for the Electrochemical Challenges of the Future."
Nature materials 8, no. 8 (2009): 621-629.
5. Carlin, R. T., H. C. De Long, J. Fuller, W. J. Lauderdale, T. Naughton, P. C. Trulove, and C. S. Bahn. "Dual Intercalating Molten Electrolyte Batteries." 393, 201-206, 1995
6. Hardwick, L. J., M. Hahn, P. Ruch, M. Holzapfel, W. Scheifele, H. Buqa, F. Krumeich, P. Novak, and R. Kotz. "An in Situ Raman Study of the Intercalation of Supercapacitor-Type Electrolyte into Microcrystalline Graphite." Electrochimica Acta 52, no. 2 (2006): 675-680.
7. Hardwick, L. J., P. W. Ruch, M. Hahn, W. Scheifele, R. Kotz, and P. Novak. "In Situ Raman Spectroscopy of Insertion Electrodes for Lithium-Ion Batteries and Supercapacitors: First Cycle Effects." Journal of Physics and Chemistry of Solids 69, no. 5-6 (2008): 1232-1237.
8. Zhao, Xin, Beatriz Mendoza Sanchez, Peter J. Dobson, and Patrick S. Grant. "The Role of Nanomaterials in Redox-Based Supercapacitors for Next Generation Energy Storage Devices." Nanoscale 3, no. 3 (2011): 839-855.
9. Zhang, Li Li, and X. S. Zhao. "Carbon-Based Materials as Supercapacitor Electrodes." Chemical Society Reviews 38, no. 9 (2009): 2520-2531
10. Arbizzani, Catia, Maurizio Biso, Dario Cericola, Mariachiara Lazzari, Francesca Soavi, and Marina Mastragostino. "Safe, High-Energy Supercapacitors Based on Solvent-Free Ionic Liquid Electrolytes." Journal of Power Sources 185, no. 2 (2008): 1575-1579
11. Helical microtubules of graphitic carbon Nature, Vol. 354 (November 1991), pp. 56-58 by S. Iijima
12. Chen, Qiao-Ling, Kuan-Hong Xue, Wei Shen, Fei-Fei Tao, Shou-Yin Yin, and Wen Xu. "Fabrication and Electrochemical Properties of Carbon Nanotube Array Electrode for Supercapacitors." Electrochimica Acta 49, no. 24 (2004): 4157-4161
13. C. Niu, Sichel, E.K., Hoch, R., Moy, D., Tennent, H. "High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes." Applied Physics Letters 70, (1997): 1480-1482.
14. An, K.H., Kim, W.S., Park, Y.S., Moon, J.-M., Bae, D.J., Lim, S.C., Lee, Y.S., . "Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes." Advanced Funtional Materials 11, no. 5 (2001): 387-392
15. 陳金銘:高容量碳粉材料.工業材料雜誌 100:57,1997
16. Maldonado, Stephen, Stephen Morin, and Keith J. Stevenson. "Structure, Composition, and Chemical Reactivity of Carbon Nanotubes by Selective Nitrogen Doping." Carbon 44, no. 8 (2006): 1429-1437.
17. Shi, H., J. Barker, M. Y. Saidi, R. Koksbang, and L. Morris. "Graphite Structure and Lithium Intercalation." Journal of Power Sources 68, no. 2 (1997): 291-295.
18. Chemical engineering(The Taiwan I. Ch. E.)Vol. 58, No.3 JUN. 2011.
19. 李汝雄 編著 綠色溶劑-離子液體的合成與應用 化學工業出版社
20. Seddon, Kenneth R. "Ionic Liquids for Clean Technology." Journal of Chemical Technology & Biotechnology 68, no. 4 (1997): 351-356.
21. Barrosse-Antle, L. E, A. M Bond, R. G Compton, A. M O'Mahony, E. I Rogers, and D. S Silvester. "Voltammetry in Room Temperature Ionic Liquids: Comparisons and Contrasts with Conventional Electrochemical Solvents." Chemistry – An Asian Journal 5, no. 2 (2010): 202-230.
22. Greaves, Tamar L., Asoka Weerawardena, Celesta Fong, Irena Krodkiewska, and Calum J. Drummond. "Protic Ionic Liquids:  Solvents with Tunable Phase Behavior and Physicochemical Properties." The Journal of Physical Chemistry B 110, no. 45 (2006): 22479-22487.
23. Holzapfel, M., C. Jost, A. Prodi-Schwab, F. Krumeich, A. Wursig, H. Buqa, and P. Novak. "Stabilisation of Lithiated Graphite in an Electrolyte Based on Ionic Liquids: An Electrochemical and Scanning Electron Microscopy Study." Carbon 43, no. 7 (2005): 1488-1498
24. Chemical engineering(The Taiwan I. Ch. E.)Vol. 58, No.5 OCT. 2011
25. Edited by Scott Handy, Middle Tennessee State University, USA, ISBN 978-953-307-605-8, Hard cover, 516 pages, Publisher: InTech, Chapters published September 22, 2011 under CC BY-NC-SA 3.0 license DOI: 10.5772/1769
26. Khomenko, V., E. Raymundo-Pinero, and F. Beguin. "High-Energy Density Graphite/Ac Capacitor in Organic Electrolyte." Journal of Power Sources 177, no. 2 (2008): 643-651.
27. Zheng, Honghe, Kai Jiang, Takeshi Abe, and Zempachi Ogumi. "Electrochemical Intercalation of Lithium into a Natural Graphite Anode in Quaternary Ammonium-Based Ionic Liquid Electrolytes." Carbon 44, no. 2 (2006): 203-210.
28. Aida, T., K. Yamada, and M. Morita. "An Advanced Hybrid Electrochemical Capacitor That Uses a Wide Potential Range at the Positive Electrode." Electrochemical and Solid-State Letters 9, no. 12 (2006): 534-536.
29. Aida, T., I. Murayama, K. Yamada, and M. Morita. "Analyses of Capacity Loss and Improvement of Cycle Performance for a High-Voltage Hybrid Electrochemical Capacitor." Journal of The Electrochemical Society 154, no. 8 (2007): A798-A804.
30. Ishihara, T., M. Koga, H. Matsumoto, and M. Yoshio. "Electrochemical Intercalation of Hexafluorophosphate Anion into Various Carbons for Cathode of Dual-Carbon Rechargeable Battery." Electrochemical and Solid-State Letters 10, no. 3 (2007): A74-A76.
31. Wei, Di, Pritesh Hiralal, Haolan Wang, Husnu Emrah Unalan, Markku Rouvala, Ioannis Alexandrou, Piers Andrew, Tapani Ryhanen, and Gehan A. J. Amaratunga. "Hierarchically Structured Nanocarbon Electrodes for Flexible Solid Lithium Batteries." Nano Energy, no. 0.
32. Placke, Tobias, Olga Fromm, Simon Franz Lux, Peter Bieker, Sergej Rothermel, Hinrich-Wilhelm Meyer, Stefano Passerini, and Martin Winter. "Reversible Intercalation of Bis (Trifluoromethanesulfonyl) Imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells." Journal of The Electrochemical Society 159, no. 11 (2012): A1755-A1765
33. Lu, Wen, Liangti Qu, Kent Henry, and Liming Dai. "High Performance Electrochemical Capacitors from Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes." Journal of Power Sources 189, no. 2 (2009): 1270-1277
34. Balducci, Andrea, Wesley A. Henderson, Marina Mastragostino, Stefano Passerini, Patrice Simon, and Francesca Soavi. "Cycling Stability of a Hybrid Activated Carbon//Poly(3-Methylthiophene) Supercapacitor with N-Butyl-N-Methylpyrrolidinium Bis(Trifluoromethanesulfonyl)Imide Ionic Liquid as Electrolyte." Electrochimica Acta 50, no. 11 (2005): 2233-2237
35. Lazzari, M., F. Soavi, and M. Mastragostino. "High Voltage, Asymmetric Edlcs Based on Xerogel Carbon and Hydrophobic Il Electrolytes." Journal of Power Sources 178, no. 1 (2008): 490-496.
36. Balducci, A., R. Dugas, P. L. Taberna, P. Simon, D. Plee, M. Mastragostino, and S. Passerini. "High Temperature Carbon–Carbon Supercapacitor Using Ionic Liquid as Electrolyte." Journal of Power Sources 165, no. 2 (2007): 922-927.
37. Mastragostino, M., and F. Soavi. "Capacitors | Electrochemical Capacitors: Ionic Liquid Electrolytes." In Encyclopedia of Electrochemical Power Sources, edited by Garche Editor-in-Chief: Jurgen, 649-657. Amsterdam: Elsevier, 2009.
38. Balducci, Andrea, Ugo Bardi, Stefano Caporali, Marina Mastragostino, and Francesca Soavi. "Ionic Liquids for Hybrid Supercapacitors." Electrochemistry Communications 6, no. 6 (2004): 566-570.
39. El-Kady, M. F., and R. B. Kaner. "Scalable Fabrication of High-Power Graphene Micro-Supercapacitors for Flexible and on-Chip Energy Storage." Nature Communications 4, (2013).
40. Kang, Y. J., H. Chung, C. H. Han, and W. Kim. "All-Solid-State Flexible Supercapacitors Based on Papers Coated with Carbon Nanotubes and Ionic-Liquid-Based Gel Electrolytes." Nanotechnology 23, no. 6 (2012).
41. Kim, B., H. Chung, and W. Kim. "High-Performance Supercapacitors Based on Vertically Aligned Carbon Nanotubes and Nonaqueous Electrolytes." Nanotechnology 23, no. 15 (2012).
42. Seel, J. A., and J. R. Dahn. "Electrochemical Intercalation of Pf6 into Graphite." Journal of The Electrochemical Society 147, no. 3 (2000): 892-898.
43. Hahn, M., O. Barbieri, F. P. Campana, R. Kotz, and R. Gallay. "Carbon Based Double Layer Capacitors with Aprotic Electrolyte Solutions: The Possible Role of Intercalation/Insertion Processes." Applied Physics A 82, no. 4 (2006): 633-638.
44. Smart, L.E., and E.A. Moore. Solid State Chemistry: An Introduction, Third Edition: Taylor & Francis, 2005. p296
45. Scott Handy, Middle Tennessee State University, USA "Applications of Ionic Liquids in Science and Technology", ISBN 978-953-307-605-8, Published: September 22, 2011 under CC BY-NC-SA 3.0 license
46. Mitani, Satoshi, Marappan Sathish, Dinesh Rangappa, Atsushi Unemoto, Takaaki Tomai, and Itaru Honma. "Nanographene Derived from Carbon Nanofiber and Its Application to Electric Double-Layer Capacitors." Electrochimica Acta 68, no. 0 (2012): 146-152.
47. Tamailarasan, P. and S. Ramaprabhu, Carbon Nanotubes-Graphene-Solidlike Ionic Liquid Layer-Based Hybrid Electrode Material for High Performance Supercapacitor. The Journal of Physical Chemistry C, 2012. 116(27): p. 14179-14187.
48. Herstedt, M., M. Smirnov, et al. (2005). "Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide anion (TFSI−)." Journal of Raman Spectroscopy 36(8): 762-770.
49. Rey, I., P. Johansson, et al. (1998). "Spectroscopic and Theoretical Study of (CF3SO2)2N- (TFSI-) and (CF3SO2)2NH (HTFSI)." The Journal of Physical Chemistry A 102(19): 3249-3258.
50. Mihkel Koel , Tallinn University of Technology, Tallinn, Estonia Professor Emeritus, Duke University, Durham, NC, USA, "Ionic Liquids in Chemical Analysis", October 9, 2008, ISBN-10: 1420046462, ISBN-13: 978-1420046465
51. Endo, M., T. Hayashi, et al. (2001). "Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite." Journal of Applied Physics 90(11): 5670-5674.
52. 成會明 編著 張勁燕 校訂 "奈米碳管 Catbon nanotube" 五南圖書出版公司 印行

QR CODE