簡易檢索 / 詳目顯示

研究生: 蔡逸舟
Yi-Chou Tsai
論文名稱: GPRS網路系統之頻道資源分配策略設計
Design of Channel Allocation Strategies for the GPRS System
指導教授: 馮輝文
Huei-Wen Ferng
口試委員: 項天瑞
Tien-Ruey Hsiang
古鴻炎
Hung-yan Gu
鄧惟中
Wei-Chung Teng
陳金蓮
none
周俊廷.
Chun-Ting Chou
黃依賢
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 84
中文關鍵詞: 動態頻道資源分配佇列優先序服務優先序門檻值控制頻道釋放頻道搶奪.
外文關鍵詞: dynamic channel allocation, buffering priority, service priority, threshold control, de-allocation, preemption.
相關次數: 點閱:159下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時代的需求及技術的演進,多媒體傳輸技術已漸漸成為現今及未來的研究主流,傳輸技術將整合語音(Voice)、影像(Video)及數據資料(Data)等,而非單一重視語音方面而已。目前使用最廣泛的GSM(Global System for Mobile Communication)無線網路系統,只能提供語音服務及少量的數據傳輸服務,已經不能滿足使用者的需求,於是以GSM網路架構為主的GPRS(General Packet Radio Service)網路系統,由此應運而生。由於GSM與GPRS兩個系統是使用共用頻道資源,對數據傳輸方式GSM是採用固定分配方式,而GPRS則採用動態分配方式,所以GPRS網路系統可提供比GSM網路系統更快的數據傳輸速度,及更有效率使用頻道的資源。因數據服務進入系統資料量增加,勢必會影響到語音服務品質QoS(Quality of Service),所以如何在語音服務與數據服務取得平衡點及有效管理頻道資源將是一個重要課題。本論文針對GPRS動態頻道資源分配的特性,提出過去文獻研究更為周密的頻道資源分配機制,這些機制所採用的技術包括佇列優先序、服務優先序、門檻值控制、頻道保留、頻道釋放、頻道搶奪等策略的組合。論文中所設計的機制利用馬可夫鏈方法進行理論分析,機制效能評估基準包含新進呼叫阻斷機率、交遞呼叫中斷機率、封包遺失機率、接受延遲時間等,並以模擬方式來驗證理論分析結果的準確度。此外,我們也觀察不同的機制在不同參數(如佇列大小、門檻值、數據資料服務時間及資料大小、交遞快慢),對效能的影響。
    最後,適合GPRS系統的機制,可透過論文的分析及比較後而得知。


    As time goes and technologies evolve, multimedia transmission has gradually become one of the main topics in the contemporary and future research areas. Therefore, transmission technology has the trend to integrate voice, video, and data simultaneously in one system, but not offers voice service only. At present, GSM (Global System for Mobile Communication) wireless network systems that
    provide voice services and a small amount data services are most widely used in many nations/regions. The systems have not satisfied users' requirements. Consequently, GPRS (General Packet Radio Service) network system is evolved from GSM network infrastructure as a result of both GSM and GPRS shared channel resource. As for data transmission method, GSM employs fixed channel allocation while GPRS employs dynamic channel allocation. Hence, data transmission rate of GPRS is faster than GSM, and channel allocation is efficient for GPRS. With the traffic of data service increase, quality of service (QoS) of voice service is surely affected. Therefore, how to obtain balance point between voice and data services and how to
    efficiently manage channel resource are important issues. In this dissertation, we take a comprehensive approach for channel allocation schemes of GPRS compared with the past studying. The schemes employ the following techniques including buffering priority, service priority, threshold control, de-allocation, preemption strategies etc. We use Markov chain approach to build an analytic model. The performance metrics include blocking/forced-termination/dropping probabilities, and delay times.
    Analytical results are validated by simulation. In addition, we observe the impact of performance when changing parameters, e.g., buffer size, the values of threshold, data service time and data size, mobility rate etc. At last, better schemes suitable for the GPRS system are suggested after a thorough comparison on system performance.

    Abstract ....................................ii Contents ....................................iii List of Tables ....................................v List of Figures ....................................vi 1 Introduction 1 1.1 Background .................................... 1 1.2 GPRS Architecture................................ 1 1.3 Motivation .................................... 3 1.4 Organization of this Dissertation........................ 6 2 Analytic Models of Channel Allocation Schemes for GPRS System ........................ 7 2.1 System Description and Channel Allocation Schemes . . . . . . . . . . . . . 7 2.2 Performance Analysis of Channel Allocation Schemes . . . . . . . . . . . . . 9 2.2.1 Analysis of Scheme CAS2 ........................ 10 2.2.2 Analysis of Scheme CAS3 ........................ 18 2.2.3 Analysis of Scheme CAS4 ........................ 25 2.2.4 Analysis of Scheme CAS5 ........................ 27 2.2.5 AnalysisofDelayTimes ......................... 30 2.3 NumericalResultsandDiscussions ................... 31 2.3.1 SimulationArrangement......................... 31 2.3.2 PerformanceandDiscussions ...................... 32 2.3.3 Cost Comparisons Among Different Schemes . . . . . . . . . . . . . 42 2.4 Conclusions.................................... 42 3 Performance Analysis of Dynamic Resource Allocation Schemes with De-allocation and Preemption for GPRS system . . . . . . . . . . . . . .45 3.1 Design of Dynamic Resource Allocation Strategies . . . . . . . . . . . . . . 45 3.2 Performance Evaluation of the Proposed Strategies . . . . . . . . . . . . . . 46 3.2.1 Analysis of Strategy RAS1 ....................... 47 3.2.2 Analysis of Strategy RAS2 ....................... 55 3.3 Numerical Resultsand Discussions ....................... 59 3.4 Conclusions.................................... 66 4 Conclusions and Future Works 69 4.1 Conclusions.................................... 69 4.2 FutureWorks ................................... 70 Appendices ......................72 A ......................72 A.1 Recursive Calculation for State Probabilities . . . . . . . . . . . . . . . . . . 72 A.2 The Balance Equation of Scheme CAS4 .................... 73 A.3 Balance Equations of Scheme CAS5 ...................... 73 B Analysis of strategies RASth1 and RASth2 ......................76 Bibliography ......................78 Vita ......................83 Publication Lists ......................84

    [1] K. Balachandran, R. Ejzak, S. Nanda, S. Vitebskiy, and S. Seth, “GPRS-136: high-
    rate packet data service for North American TDMA digital cellular systems,” IEEE
    Personal Commun., vol. 6, no. 3, pp. 34–47, June 1999.
    [2] G. Brasche and B. Walke, “Concept, service, and protocols of the new GSM phase2+
    general packet racket radio service,” IEEE Commun. Mag., vol. 35, no. 10, pp. 94–104,
    Oct. 1997.
    [3] J. Cai and D. J. Goodman, “General packet redio service in GSM,” IEEE Commun.
    Mag., vol. 35, no. 8, pp. 122–131, Aug. 1997.
    [4] W. Y. Chen, J. L. C. Wu, and L. L. Lu, “Performance comparisons of dynamic
    resource allocation with/without channel de-allocation in GSM/GPRS networks,”
    IEEE Commun. Letters, vol. 7, no. 1, pp. 10–12, Jan. 2003.
    [5] M. Cheng and L. F. Chang, “Wireless dynamic channel assignment performance under
    packet data traffic,” IEEE Journal on Selected Areas in Commun. vol. 17, no. 7, pp.
    1257–1269, Jul. 1999.
    [6] C. Y. Chia, and M. F. Chang, “Channel allocation for priority packets in the GPRS
    network,”IEEE Commun. Lett., vol. 10, no. 8, pp. 602–604, Aug 2006.
    [7] E. Dahlman, B. Gudmundson, M. Nilsson, and J. Skold, “UMTS/IMT-2000 based on
    wideband CDMA,” IEEE Commun. Mag., vol. 36, no 9, pp. 70–80, Sept. 1998.
    [8] J. Eberspacher, H. J. Vogel, and C. Bettstetter, GSM – Switching, Services, and
    Protocols. New York: Wiley, 2001.
    [9] M. Ermel, T. M‥uller, J. Sch‥uler, M. Schweigel, and K. Begain, “ Performance of GSM
    networks with general packet radio services,” Performance Evaluation, vol. 48, no.
    1–4, pp. 285–310, May 2002.
    [10] ETSI, “Digital cellular telecommunications system (Phase 2+): High Speed Circuit
    Switched Data (HSCSD); Stage 2 (GSM 03.34 version 7.0.0 Release 1998),” ETSI/TC,
    Tech. Rep. Rec. GSM 03.34, 1999.
    [11] ETSI, “Digital cellular telecommunications system (Phase 2+): General Packet Radio
    Service (GPRS); Service description; Stage 2 (3GPP TS 03.60 version 7.7.0 release
    1998),” ETSI/TC, Tech. Rep. Rec. 3GPP 03.60, 2002.
    [12] ETSI, “Digital cellular telecommunications system (Phase 2+): Technical realization of Short Message Service (SMS) (3GPP TS 23.040 version 5.5.1 Release 5),”
    ETSI/TC, Tech. Rep. Rec. 3GPP 23.040, 2002.
    [13] ETSI, “Digital cellular telecommunications system (Phase 2+): General Packet Radio
    Service (GPRS); Overall description of the GPRS radio interface; Stage 2 (GSM 03.64
    version 7.0.0 release 1999),” ETSI/TC, Tech. Rep. Rec. GSM 03.64, 1999.
    [14] Y. Fang, I. Chlamtac, and Y. B. Lin, “Channel occupancy times and handoff rate
    for mobile computing and PCS networks,” IEEE Trans. Computers, vol. 47, no. 6,
    pp. 679–692, June 1998.
    [15] S. Frattasi, H. Fathi, F. H. P. Fitzek, R. Prasad, and M. D. Katz “Defining 4G
    technology from the users perspective,” IEEE Network, vol. 20, no. 1, pp. 35–41,
    Jan./Feb. 2006.
    [16] H. W. Ferng and J. F. Chang, “Characterization of the output of an ATM output
    buffer receiving self-similar traffic,” in Proc. IEEE GLOBECOM ’01, pp. 2650–2653,
    2001.
    [17] H. W. Ferng and Y. C. Tsai, “Using priority, buffering, threshold control and reservation techniques to improve channel allocation schemes for the GPRS system,” IEEE
    Trans. Vehicular Tech., vol. 54, no. 1, pp. 286–306, Jan. 2005.
    [18] J. A. Garay and I. S. Gopal, “Call preemption in commnunication networks,” in
    Proc. IEEE INFOCOM ’92, pp. 1043–1050, 1992.
    [19] H. Holma and A. Toskala, WCDMA for UMTS, Radio Access for Third Generation
    Mobile Communications, New York: Wiley, 2002.
    [20] D. Hong and S. S. Rappaport, “Traffic model and performance analysis for cellular
    mobile radio telephone system with prioritized and nonprioritized handoff procedure,”
    IEEE Trans. Vehicular Tech., vol. 35, no. 3, pp. 77–92, Jan. 1986.
    [21] S. Y. Hui, and K. H. Yeung, “Challenges in the migration to 4G mobile systems,”
    IEEE Commun. Mag., vol. 41, no 12, pp. 54–59, Dec. 2003.
    [22] Y. Hwang, Y. Han, and Y. Kim, “Performance analysis of mixed voice/data service
    in a microcell-based PCS network,” IEICE Trans. Fundamentals, vol. E81-A, no. 6,
    pp.1136–1144, 1998.
    [23] H. Kaaranen, A. Ahtiainen, L. Laitinen, S. Naghian, and V. Niemi, UMTS networks:
    Architecture, Mobility, and Services. New York: Wiley, 2001.
    [24] P. Lin and Y. B. Lin, “Channel allocation for GPRS,” IEEE Trans. Vehicular Tech.,
    vol. 50, no. 2, pp. 375–387, March 2001.
    [25] P. Lin, “Channel allocation for GPRS with buffering mechanisms,” Wireless Networks, pp. 431–441, Sep. 2003.
    [26] C. Lindemann and A. Th‥ummler, “Performance analysis of general packet radio service,” Computer Networks, vol. 41, no. 1, pp. 1–17, Jan. 2003.
    [27] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-similar
    nature of ethernet traffic (extended version),” IEEE/ACM Trans. Networking, vol. 2,
    no. 1, pp. 1–15, Feb. 1994.
    [28] Y. B. Lin, S. Mohan, and A. Noerpel, “Queueing priority channel assignment strategies for PCS hand-off and initial access,” IEEE Trans. Vehicular Tech., vol. 43, no. 3,
    pp. 704–712, Aug. 1994.
    [29] H. H. Liu, J. L. C. Wu, and W. C. Hsieh, “Delay analysis of intergrated voice and
    data service for GPRS,” IEEE Commun. Lett., vol. 6, no. 8, pp. 319–321, Aug. 2002.
    [30] B. B. Madan, S. Dharmaraja, K. S. Trivedi, “Combined Guard Channel and Mobile-
    Assisted Handoff for Cellular Networks, ”IEEE Trans. Vehicular Tech., vol. 57, no.
    1, pp. 502–510, Jan. 2008.
    [31] K. Mitchell and K. Sohraby, “An analysis of the effects of mobility on bandwidth allocation strategies in multi-class cellular wireless networks,” in Proc. IEEE INFOCOM
    ’01, pp. 1005–1011, 2001.
    [32] S. Ni and S. G. H‥aggman, “GPRS performance estimation in GSM circuit switched
    services and GPRS shared resource systems,” in Proc. IEEE WCNC ’99, pp. 1417–
    1421, 1999.
    [33] S. H. Oh and D. W. Tcha, “Prioritized channel assignment in a cellular radio network,” IEEE Trans. Commun., vol. 40, no. 7, pp. 1259–1269, Jul. 1992.
    [34] V. Paxson and S. Floyd, “Wide area traffic: The failure of Poisson modeling,”
    IEEE/ACM Trans. Networking, vol. 3, no. 3, pp. 226–244, Jun. 1995.
    [35] N. R. Sollenberger, N. Seshadri, and R. Cox, “The evolution of IS-136 TDMA for
    third-generation wireless services,” IEEE Personal Commun., vol. 6, no. 3, pp. 8–18,
    June 1999.
    [36] P. Stuckmann and F. M‥uller, “GPRS radio network capacity and quality of service
    using fixed and on-demand channel allocation techniques,” in Proc. IEEE VTC ’00,
    pp. 440–444, 2000.
    [37] J. Wang, Q. A. Zeng and D. P. Agrawal, “Performance analysis of preemptive handoff
    scheme for integrated wireless mobile networks,” in Proc. IEEE GLOBECOM ’01, pp.
    3277–3281, 2001.
    [38] J. Wang, Q. A. Zeng, and D. P. Agrawal, “Performance analysis of a preemptive
    and priority resevervation handoff scheme for integrated service-based wireless mobile
    networks,” IEEE Trans. Mobile Computing, vol. 2, no. 1, pp. 65–75, Jan.–Mar., 2003.
    [39] A. E. Xhafa, and O. K. Tonguz, “Handover performance of priority schemes in cellular
    networks,” IEEE Trans. Vehicular Tech., vol. 57, no. 1, pp. 565–577, Jan. 2008.
    [40] Y. Zhang and B. H. Soong, “Performance evaluation of GSM/GPRS networks with
    channel re-allocation scheme,” IEEE Commun. Lett., vol. 8, no. 5, pp. 280–282, May
    2004.
    [41] J. Zheng and E. Regentova, “Performance analysis of channel de-allocation schemes
    for dynamic resource allocation in GSM/GPRS networks,” IEE Electronics Lett.,
    vol. 40, no. 24, pp. 1544–1545, Nov. 2004.

    QR CODE