簡易檢索 / 詳目顯示

研究生: TRAN THI NGOC NGAN
TRAN THI NGOC NGAN
論文名稱: Phosphate Removal by Waste Oyster Shell
Phosphate Removal by Waste Oyster Shell
指導教授: 劉志成
Jhy-Chern Liu
口試委員: Tsai Sheng-Long
Tsai Sheng-Long
Warmadewanthi
Warmadewanthi
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 102
中文關鍵詞: adsorptionphosphateoyster shellthermal treatmentwater
外文關鍵詞: adsorption, phosphate, oyster shell, thermal treatment, water
相關次數: 點閱:136下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廢牡蠣殼可以做為磷酸鹽的吸附劑。 利用平衡吸附和動力學評估其可行性,反應速率符
    合偽二階模型,物理吸附隨著pH值的增加而降低並符合Langmuir模型。 pH 7有良好的吸
    附效能歸因於表面沉澱。 熱處理後的牡蠣殼在鹼性條件下具有pH IEP ,但比表面積和孔徑
    都減小。 因此,熱處理不一定會增強磷酸鹽吸附。


    Waste oyster shell was used as an alternative adsorbent for phosphate removal. The equilibrium adsorption and kinetic studies were investigated to evaluate the feasibility. Pseudo-second-order model fitted the reaction rate well. Adsorption decreased with increasing pH mainly via physical adsorption and it can be described by Langmuir model. The pronounced adsorption at pH 7 could probably attribute to surface precipitation. Oyster shell after thermal treatment had pHIEP at more alkaline range, yet both specific surface area and pore size decreased. Thus, thermal treatment did not necessarily enhance phosphate adsorption.

    Abstract I Acknowledgment III Contents V Lists of figures VII Lists of tables X CHAPTER 1 INTRODUCTION 1-1 1.1 Background 1-1 1.2 Objectives 1-2 CHAPTER 2 LITERATURE REVIEW 2-1 2.1 Phosphorus 2-1 2.2 Phosphate removal from wastewater 2-1 2.2.1 Technologies for phosphate removal 2-1 2.2.2 Adsorption treatment in phosphate removal 2-2 2.2.2.1 Adsorption 2-2 2.2.2.2 Factors of phosphate adsorption 2-2 2.3 Reuse of oyster shell for phosphate removal 2-8 2.4 Thermal treatment 2-13 CHAPTER 3 MATERIALS AND METHODS 3-1 3.1 Materials 3-1 3.2 Instruments 3-2 3.3 Experimental methods 3-3 3.3.1 Pretreatment of oyster shell 3-3 3.3.2 Thermal treatment 3-3 3.3.3 Adsorption of phosphate 3-3 3.3.4 Kinetic study of phosphate adsorption 3-4 3.3.5 Characterization of oyster shell 3-5 3.3.5.1 BET surface area 3-5 3.3.5.2 X-ray diffraction (XRD) 3-5 3.3.5.3 Scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX) 3-6 3.3.5.4 Fourier transform infrared spectroscopy (FTIR) 3-6 3.3.5.5 Zeta potential measurement 3-6 3.3.6 Phosphate analysis 3-7 3.3.7 Equilibrium modelling 3-7 3.4 Experimental flow chart 3-9 CHAPTER 4 RESULTS AND DISCUSSION 4-1 4.1 Characterization of oyster shell and preheated oyster shell 4-1 4.1.1 Fourier transforms infrared spectroscopy (FTIR) analysis 4-1 4.1.2 X-ray diffraction (XRD) analysis 4-5 4.1.3 Brunauer-Emmett-Teller (BET) analysis 4-7 4.1.4 Scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX) analysis 4-8 4.1.5 Zeta potential 4-10 4.2 Removal of phosphate 4-13 4.2.1 Phosphate removal by oyster shell 4-13 4.2.1.1 Adsorption isotherm study 4-13 4.2.1.2 Kinetic study 4-17 4.2.2 Phosphate adsorption by oyster shell preheated at 400○C 4-19 4.2.2.1 Adsorption isotherm study 4-19 4.2.2.2 Kinetic study 4-25 4.2.3 Adsorption isotherm study of phosphate on oyster shell preheated at 700○C 4-27 4.3 Characterization of loaded oyster shell samples 4-29 4.3.1 Fourier transform infrared spectroscopy (FTIR) analysis 4-29 4.3.2 X-ray diffraction (XRD) analysis 4-33 4.3.3 Scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX) analysis 4-37 4.4 Comparison with other adsorbents 4-40 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 5-1 5.1 Conclusions 5-1 5.2 Recommendations 5-2 REFERENCES R-1 APPENDIX A A-1 APPENDIX B B-1

    Al Mahrouqi, D., Vinogradov, J., & Jackson, M. D. (2017). Zeta potential of artificial and natural calcite in aqueous solution. Advances in Colloid and Interface Science, 240, 60-76.
    Alidoust, D., Kawahigashi, M., Yoshizawa, S., Sumida, H., & Watanabe, M. (2015). Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells. Journal of Environmental Management, 150, 103-110.
    Asaoka, S., Yamamoto, T., Kondo, S., & Hayakawa, S. (2009). Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments. Bioresource Technology, 100(18), 4127-4132. B. Alotaibi, M., Nasr-El-Din, H., & J. Fletcher, J. (2011). Electrokinetics of Limestone and Dolomite Rock Particles (Vol. 14).
    Berk, Z. (2018). Chapter 12 - Adsorption and ion exchange. In Z. Berk (Ed.), Food Process Engineering and Technology (Third Edition) (pp. 311-327): Academic Press.
    Biswas, B. K., Inoue, K., Ghimire, K. N., Ohta, S., Harada, H., Ohto, K., & Kawakita, H. (2007). The adsorption of phosphate from an aquatic environment using metal-loaded orange waste. Journal of Colloid and Interface Science, 312(2), 214-223.
    Boeykens, S. P., Piol, M. N., Samudio Legal, L., Saralegui, A. B., & Vázquez, C. (2017). Eutrophication decrease: Phosphate adsorption processes in presence of nitrates. Journal of Environmental Management, 203, 888-895.
    Bueno-Ferrer, C., Parres-Esclapez, S., Lozano-Castelló, D., & Bueno-López, A. (2010). Relationship between surface area and crystal size of pure and doped cerium oxides. Journal of Rare Earths, 28(5), 647-653.
    Calugaru, I. L., Neculita, C. M., Genty, T., Bussière, B., & Potvin, R. (2016). Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage. Journal of Hazardous Materials, 310, 48-55.
    Chen, W.-T., Lin, C.-W., Shih, P.-K., & Chang, W.-L. (2012). Adsorption of phosphate into waste oyster shell: thermodynamic parameters and reaction kinetics. Desalination and water treatment, 47(1-3), 86-95.
    Chen, Y., Xu, J., Lv, Z., xie, R., Huang, L., & Jiang, J. (2018). Impacts of biochar and oyster shells waste on the immobilization of arsenic in highly contaminated soils. Journal of Environmental Management, 217, 646-653.
    Cheung, K., & Venkitachalam, T. (2000). Improving phosphate removal of sand infiltration system using alkaline fly ash. Chemosphere, 41(1-2), 243-249.
    Chiou, I. J., Chen, C. H., & Li, Y. H. (2014). Using oyster-shell foamed bricks to neutralize the acidity of recycled rainwater. Construction and Building Materials, 64, 480-487.
    Cicerone, D. S., Regazzoni, A. E., & Blesa, M. A. (1992). Electrokinetic properties of the calcite/water interface in the presence of magnesium and organic matter. Journal of Colloid and Interface Science, 154(2), 423-433.
    Correia, L. M., de Sousa Campelo, N., Novaes, D. S., Cavalcante, C. L., Cecilia, J. A., Rodríguez-Castellón, E., & Vieira, R. S. (2015). Characterization and application of dolomite as catalytic precursor for canola and sunflower oils for biodiesel production. Chemical Engineering Journal, 269, 35-43.
    Devi, P., & Saroha, A. K. (2017). Utilization of sludge based adsorbents for the removal of various pollutants: A review. Science of The Total Environment, 578, 16-33.
    Du, X., Han, Q., Li, J., & Li, H. (2017). The behavior of phosphate adsorption and its reactions on the surfaces of Fe–Mn oxide adsorbent. Journal of the Taiwan Institute of Chemical Engineers, 76, 167-175.
    Fan, L., Zhang, S., Zhang, X., Zhou, H., Lu, Z., & Wang, S. (2015). Removal of arsenic from simulation wastewater using nano-iron/oyster shell composites. Journal of Environmental Management, 156, 109-114.
    Gérard, F. (2016). Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils — A myth revisited. Geoderma, 262, 213-226. Goh, K.-H., Lim, T.-T., & Dong, Z. (2008). Application of layered double hydroxides for removal of oxyanions: A review. Water research, 42(6), 1343-1368.
    Gunasekaran, S., Anbalagan, G., & Pandi, S. (2006). Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 37(9), 892-899.
    Han, C., Lalley, J., Iyanna, N., & Nadagouda, M. N. (2017). Removal of phosphate using calcium and magnesium-modified iron-based adsorbents. Materials Chemistry and Physics, 198, 115-124.
    Hwang, D. J., Ryu, J. Y., Park, J. H., Yu, Y. H., Lee, S. K., Cho, K. H. Han., Lee, J. D. (2012). Calcination of mega-crystalline calcite using microwave and electric furnaces. Journal of Industrial and Engineering Chemistry, 18(6), 1956-1963.
    Hwidi, R. S., Tengku Izhar, T. N., & Mohd Saad, F. N. (2018). Characterization of Limestone as Raw Material to Hydrated Lime. E3S Web Conf., 34, 02042.
    Inglezakis, V. J., & Poulopoulos, S. G. (2006a). 2 - Adsorption, Ion Exchange, and Catalysis Adsorption, Ion Exchange and Catalysis (pp. 31-56). Amsterdam: Elsevier.
    Inglezakis, V. J., & Poulopoulos, S. G. (2006b). 4 - Adsorption and Ion Exchange Adsorption, Ion Exchange and Catalysis (pp. 243-353). Amsterdam: Elsevier.
    Jian, Z., & Hejing, W. (2003). The physical meanings of 5 basic parameters for an X-ray diffraction peak and their application. Chinese Journal of Geochemistry, 22(1), 38-44.
    Johir, M. A. H., Pradhan, M., Loganathan, P., Kandasamy, J., & Vigneswaran, S. (2016). Phosphate adsorption from wastewater using zirconium (IV) hydroxide: Kinetics, thermodynamics and membrane filtration adsorption hybrid system studies. Journal of Environmental Management, 167, 167-174.
    Kalinkin, A., V. Kalinkina, E., Zalkind, O. A., & I. Makarova, T. (2005). Chemical Interaction of Calcium Oxide and Calcium Hydroxide with CO2 during Mechanical Activation (Vol. 41).
    Kammerer, J., Carle, R., & Kammerer, D. R. (2011). Adsorption and Ion Exchange: Basic Principles and Their Application in Food Processing. Journal of Agricultural and Food Chemistry, 59(1), 22-42.
    Karaca, S., Gürses, A., Ejder, M., & Açıkyıldız, M. (2006). Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite. Journal of Hazardous Materials, 128(2), 273-279.
    Köse, T. E., & Kıvanç, B. (2011). Adsorption of phosphate from aqueous solutions using calcined waste eggshell. Chemical Engineering Journal, 178, 34-39.
    Krishna, K. B., Niaz, M. R., Sarker, D. C., & Jansen, T. (2017). Phosphorous removal from aqueous solution can be enhanced through the calcination of lime sludge. Journal of Environmental Management, 200, 359-365.
    Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403.
    Lee, Y. H., Islam, S. M. A., Hong, S. J., Cho, K. M., Heo, J. Y., Kim, H., & Yun, H. D. (2010). Composted oyster shell as lime fertilizer is more effective than fresh oyster shell. Bioscience, Biotechnology, and Biochemistry, 74(8), 1517-1521.
    Li, G., Xu, X., Chen, E., Fan, J., & Xiong, G. (2015). Properties of cement-based bricks with oyster-shells ash. Journal of Cleaner Production, 91, 279-287.
    Li, Z., Sun, X., Huang, L., Liu, D., Yu, L., Wu, H., & Wei, D. (2017). Phosphate adsorption and precipitation on calcite under calco-carbonic equilibrium condition. Chemosphere, 183, 419-428.
    Liu, J. C., Warmadewanthi, & Chang, C.-J. (2009). Precipitation flotation of phosphate from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1), 215-219.
    Liu, Q., Guo, L., Zhou, Y., Dai, Y., Feng, L., Zhou, J., Zhao, J., Liu, J., Qian, G. (2012). Phosphate adsorption on biogenetic calcium carbonate minerals: effect of a crystalline phase. Desalination and water treatment, 47(1-3), 78-85.
    Loganathan, P., Vigneswaran, S., Kandasamy, J., & Bolan, N. (2014). Removal and Recovery of Phosphate From Water Using Sorption.Critical Reviews in Environmental Science and Technology, 44(8), 847-907.
    Long, F., Gong, J.-L., Zeng, G.-M., Chen, L., Wang, X.-Y., Deng, J.-H., Niu, Q.-Y., Zhang, H.-Y., Zang, X.-R. (2011). Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide. Chemical Engineering Journal, 171(2), 448-455.
    Lu, J., Cong, X., Li, Y., Hao, Y., & Wang, C. (2018). Scalable recycling of oyster shells into high purity calcite powders by the mechanochemical and hydrothermal treatments. Journal of Cleaner Production, 172, 1978-1985.
    Luz, A. P., Consoni, L. B., Pagliosa, C., Aneziris, C. G., & Pandolfelli, V. C. (2018). Sintering effect of calcium carbonate in high-alumina refractory castables. Ceramics International, 44(9), 10486-10497.
    Mangwandi, C., Albadarin, A. B., Glocheux, Y., & Walker, G. M. (2014). Removal of ortho-phosphate from aqueous solution by adsorption onto dolomite. Journal of Environmental Chemical Engineering, 2(2), 1123-1130.
    Manikandan, R., Martin, P., & Devashankar, S. (2013). A Study of Solid State Phase Transformation of Biogenic Aragonite into Calcite Crystals. Proceeding of International Conference . on Emerging Trends in Engineering and Technology.
    Marouf, R., Marouf-Khelifa, K., Schott, J., & Khelifa, A. (2009). Zeta potential study of thermally treated dolomite samples in electrolyte solutions. Microporous and Mesoporous Materials, 122(1), 99-104.
    Mitrogiannis, D., Psychoyou, M., Baziotis, I., Inglezakis, V. J., Koukouzas, N., Tsoukalas, N., Palles, D., Kamitsos, E., Oikonomou, G., Markou, G. (2017). Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)2 treated natural clinoptilolite. Chemical Engineering Journal, 320, 510-522.
    Moldoveanu, S. C., & David, V. (2013). Chapter 8 - Solutes in HPLC Essentials in Modern HPLC Separations (pp. 449-464): Elsevier.
    Nakane, S., Tachi, T., Yoshinaka, M., Hirota, K., & Yamaguchi, O. (1997). Characterization and sintering of reactive cerium (IV) oxide powders prepared by the hydrazine method. Journal of the American Ceramic Society, 80(12), 3221-3224.
    Ngamcharussrivichai, C., Wiwatnimit, W., & Wangnoi, S. (2007). Modified dolomites as catalysts for palm kernel oil transesterification. Journal of Molecular Catalysis A: Chemical, 276(1), 24-33.
    Nguyen, T. (2015). Adsorption Of Phosphorus From Wastewater Onto Biochar: Batch And Fixed-bed Column Studies.
    Nguyen, T. A. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Lee, D. J., Nguyen, P.D., Bui, X. T. (2014). Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: Potential and obstacles. Bioresource Technology, 169, 750-762.
    Nur, T., Johir, M. A. H., Loganathan, P., Nguyen, T., Vigneswaran, S., & Kandasamy, J. (2014). Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin. Journal of Industrial and Engineering Chemistry, 20(4), 1301-1307.
    Phromprasit, J., Powell, J., & Assabumrungrat, S. (2016). Metals (Mg, Sr and Al) modified CaO based sorbent for CO2 sorption/desorption stability in fixed bed reactor for high temperature application. Chemical Engineering Journal, 284, 1212-1223.
    Pokroy, B., Fitch, A. N., Lee, P. L., Quintana, J. P., El’ad, N. C., & Zolotoyabko, E. (2006). Anisotropic lattice distortions in the mollusk-made aragonite: A widespread phenomenon. Journal of Structural Biology, 153(2), 145-150.
    Rentz, J. A., Turner, I. P., & Ullman, J. L. (2009). Removal of phosphorus from solution using biogenic iron oxides. Water Research, 43(7), 2029-2035.
    Rouquerol, F., Rouquerol, J., & Sing, K. (1999). CHAPTER 1 - Introduction Adsorption by Powders and Porous Solids (pp. 1-26). London: Academic Press.
    Rouquerol, F., Rouquerol, J., Sing, K. S. W., Maurin, G., & Llewellyn, P. (2014). 1 - Introduction Adsorption by Powders and Porous Solids (Second Edition) (pp. 1-24). Oxford: Academic Press.
    Schadle, T., Pejcic, B., & Mizaikoff, B. (2016). Monitoring dissolved carbon dioxide and methane in brine environments at high pressure using IR-ATR spectroscopy. Analytical Methods, 8(4), 756-762.
    Shih, P.-K., & Chang, W.-L. (2015). The effect of water purification by oyster shell contact bed. Ecological Engineering, 77, 382-390.
    Sivakumar, S., Ravisankar, R., Raghu, Y., Chandrasekaran, A., & Chandramohan, J. (2012). FTIR Spectroscopic Studies on coastal sediment samples from Cuddalore District, Tamilnadu, India. Indian Journal of Advances in Chemical Science, 1, 40-46.
    Sø, H. U., Postma, D., Jakobsen, R., & Larsen, F. (2011). Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling. Geochimica et Cosmochimica Acta, 75(10), 2911-2923.
    Stefaniak, E., Biliński, B., Dobrowolski, R., Staszczuk, P., & Wójcik, J. (2002). The influence of preparation conditions on adsorption properties and porosity of dolomite-based sorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 208(1), 337-345.
    Stuart, B. (2004). Infrared Spectroscopy : Fundamentals and Applications. Chichester, West Sussex, England ; Hoboken, NJ : J. Wiley, [2004].
    Su, C.-C., Dulfo, L. D., Dalida, M. L. P., & Lu, M.-C. (2014). Magnesium phosphate crystallization in a fluidized-bed reactor: Effects of pH, Mg:P molar ratio and seed. Separation and Purification Technology, 125, 90-96.
    Takaya, C. A., Fletcher, L. A., Singh, S., Okwuosa, U. C., & Ross, A. B. (2016). Recovery of phosphate with chemically modified biochars. Journal of Environmental Chemical Engineering, 4(1), 1156-1165.
    Tsai, H.-C., Lo, S.-L., & Kuo, J. (2011). Using pretreated waste oyster and clam shells and microwave hydrothermal treatment to recover boron from concentrated wastewater. Bioresource Technology, 102(17), 7802-7806.
    Vikrant, K., Kim, K.-H., Ok, Y. S., Tsang, D. C. W., Tsang, Y. F., Giri, B. S., & Singh, R. S. (2018). Engineered/designer biochar for the removal of phosphate in water and wastewater. Science of The Total Environment, 616-617, 1242-1260.
    Wang, T., Xiao, D.-C., Huang, C.-H., Hsieh, Y.-K., Tan, C.-S., & Wang, C.-F. (2014). CO2 uptake performance and life cycle assessment of CaO-based sorbents prepared from waste oyster shells blended with PMMA nanosphere scaffolds. Journal of Hazardous Materials, 270, 92-101.
    Wei, Y.-L., Kuo, P.-J., Yin, Y.-Z., Huang, Y.-T., Chung, T.-H., & Xie, X.-Q. (2018). Co-sintering oyster shell with hazardous steel fly ash and harbor sediment into construction materials. Construction and Building Materials, 172, 224-232.
    Wu, S.-C., Hsu, H.-C., Hsu, S.-K., Tseng, C.-P., & Ho, W.-F. (2017). Preparation and characterization of hydroxyapatite synthesized from oyster shell powders. Advanced Powder Technology, 28(4), 1154-1158.
    Xu, X., Gao, B.-Y., Yue, Q.-Y., & Zhong, Q.-Q. (2010). Preparation of agricultural by-product based anion exchanger and its utilization for nitrate and phosphate removal. Bioresource Technology, 101(22), 8558-8564.
    Yan, Y., Sun, X., Ma, F., Li, J., Shen, J., Han, W., Liu,X.,Wang, L. (2014). Removal of phosphate from wastewater using alkaline residue. Journal of Environmental Sciences, 26(5), 970-980.
    Yang, S., Jin, P., Wang, X., Zhang, Q., & Chen, X. (2016). Phosphate recovery through adsorption assisted precipitation using novel precipitation material developed from building waste: Behavior and mechanism. Chemical Engineering Journal, 292, 246-254.
    Yeom, S. H., & Jung, K.-Y. (2009). Recycling wasted scallop shell as an adsorbent for the removal of phosphate. Journal of Industrial and Engineering Chemistry, 15(1), 40-44.
    Yeoman, S., Stephenson, T., Lester, J. N., & Perry, R. (1988). The removal of phosphorus during wastewater treatment: A review. Environmental Pollution, 49(3), 183-233.
    Yu, J., Liang, W., Wang, L., Li, F., Zou, Y., & Wang, H. (2015). Phosphate removal from domestic wastewater using thermally modified steel slag. Journal of Environmental Sciences, 31, 81-88.
    Yu, Y., Wu, R., & Clark, M. (2010). Phosphate removal by hydrothermally modified fumed silica and pulverized oyster shell. Journal of Colloid and Interface Science, 350(2), 538-543.
    Yuangsawad, R., & Na-Ranong, D. (2011). Recycling oyster shell as adsorbent for phosphate removal. Paper presented at the TIChE International Conference.
    Yue, Q.-Y., Wang, W.-Y., Gao, B.-Y., Xu, X., Zhang, J., & Li, Q. (2010). Phosphate removal from aqueous solution by adsorption on modified giant reed. Water Environment Research, 82(4), 374-381.
    Zhan, Y., Zhang, H., Lin, J., Zhang, Z., & Gao, J. (2017). Role of zeolite's exchangeable cations in phosphate adsorption onto zirconium-modified zeolite. Journal of Molecular Liquids, 243, 624-637.
    Zhang, G. G. Z., & Zhou, D. (2009). Chapter 2 - Crystalline and Amorphous Solids Developing Solid Oral Dosage Forms (pp. 25-60). San Diego: Academic Press.
    Zhang, M., Gao, B., Yao, Y., Xue, Y., & Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210, 26-32. doi12
    Zhou, J., Xu, Z. P., Qiao, S., Liu, Q., Xu, Y., & Qian, G. (2011). Enhanced removal of triphosphate by MgCaFe-Cl-LDH: synergism of precipitation with intercalation and surface uptake. Journal of Hazardous Materials, 189(1-2), 586-594.
    Zhou, Y.-F., & Haynes, R. J. (2010). Sorption of Heavy Metals by Inorganic and Organic Components of Solid Wastes: Significance to Use of Wastes as Low-Cost Adsorbents and Immobilizing Agents. Critical Reviews in Environmental Science and Technology, 40(11), 909-977.

    QR CODE