簡易檢索 / 詳目顯示

研究生: Hoang Phuc Pham
Hoang Phuc Pham
論文名稱: 用於生物成像和藥物遞送的聚集誘導發射透明質酸前藥
An Aggregation-induced emission hyaluronic acid prodrug for bioimaging and drug delivery
指導教授: Neralla Vijayakameswara Rao
Neralla Vijayakameswara Rao
口試委員: 李振綱
Cheng-Kang Lee
Kunal Nepali
Kunal Nepali
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 109
外文關鍵詞: nanomedicine
相關次數: 點閱:188下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

納米級藥物遞送系統(DDS)由於其諸多優點,如控制釋放、高效性和特異性靶向,廣泛應用於癌症治療中。通過運載熒光染料,納米DDS可以進一步增強其熒光成像能力。熒光染料的使用可實現對腫瘤部位的精確成像和監測,促進靶向藥物遞送,並實時評估治療反應。

然而,如果將常規熒光染料大量引入納米顆粒中,可能會出現所謂的聚集引起猝滅(ACQ)現象,顯著降低其成像能力。最近,通過使用特定的聚集誘導發光(AIE)染料,找到了解決ACQ問題的方法。在過去幾年中,已開發了許多基於AIE的熒光納米顆粒,利用物理封裝或共價連接的AIE染料。這些創新平台已在藥物遞送、光療和細胞成像應用中得到有效利用。

本研究設計了一種以透明質酸為基礎的R6新藥前藥,並具有AIE特性。該前藥能在水溶液中形成納米顆粒(NP),激活R6基團的AIE特性。這些顆粒在腫瘤微環境(TME)酸性條件下釋放R6(72小時後釋放率達99%),並在生理pH下保持穩定。此外,通過顯微鏡觀察到AIE的熒光信號。透明質酸殼層可以靶向過表達的癌細胞CD44受體,使NP具有活性靶向特性。該前藥對小鼠乳腺癌細胞系4T1具有毒性,對L929成纖維細胞無害。熒光顯微鏡圖像證實了NP在4T1細胞中的成像能力。透明質酸-R6聚合物前藥有望成為一種多功能的pH敏感藥物遞送平台


Nanosized drug delivery systems (DDS) are widely utilized in cancer therapy due to their numerous advantages, such as controlled delivery, high efficacy, and site-specific targeting. Nano-DDS can be further enhanced by the incorporation of fluorescence imaging capabilities, by delivering fluorescence dyes. The use of fluorescence dyes allows for precise imaging and monitoring of the tumor site, facilitating targeted drug delivery and enabling real-time assessment of therapeutic response.
Nevertheless, if conventional fluorescent dyes are incorporated in nanoparticles in high quantities, they can experience a phenomenon known as aggregation-caused quenching (ACQ), significantly impairing their imaging capacity. Recently, a solution to the ACQ issue has been found through the use of specific aggregation-induced emission (AIE) dyes. Over the past few years, numerous AIE-based fluorescent nanoparticles have been developed, utilizing either physically encapsulated or covalently attached AIE dyes. These innovative platforms have been effectively utilized in drug delivery, phototherapy, and cellular imaging applications.
In this work, a hyaluronic acid-based prodrug of the novel drug R6 was designed with AIE properties. The prodrug was able to form nanoparticles (NP) in an aqueous solution, which activated the AIE properties of pendant R6 groups. The particles released R6 at the tumor microenvironment (TME) acidic condition (99% release after 72 hours) and remained stable at the physiological pH. In addition, fluorescence signals by AIE were detected by microscopy. The hyaluronic acid shell can target the overexpressed CD44 receptors in cancer cells, which gives the NP active targeting property. The prodrug showed toxicity against the mouse breast cancer cell line 4T1 while being harmless to the L929 fibroblast cells. Fluorescence microscopy images confirmed the imaging ability of the NP in 4T1 cells. The HA-R6 polymer prodrug promises to be a versatile pH-sensitive drug delivery platform

Abstract i 摘要 iii TABLE OF CONTENT iv Acknowledgment x Abbreviation xi Chapter 1: Introduction and Research Objective 1 1.1 Background 1 1.2. Aggregation-induced emission. 2 1.3. Research objective 5 1.3.1. Hyaluronic acid backbone for specific tumor targeting. 5 1.3.2. AIE for self-tracking and bioimaging. 6 Chapter 2: Literature Review 7 2.1. pH-responsive drug delivery: 7 2.2. Drug delivery system 12 2.3. Targeted drug delivery 15 2.3.1. Passive targeting 15 2.3.2 Active targeting 16 2.4. Aggregation-induced Emission 20 2.4.1. Proposed mechanism of AIE 20 2.4.2. AIE in nanomedicine 28 2.4.3. AIE in biomedical applications 32 2.5. Steglich Esterification/Amidation 55 Chapter 3: Materials and Methods 58 3.1. Materials and Apparatus 58 3.1.1. Materials 58 3.1.2. Apparatus 60 3.2. Experimental Methods 68 3.2.1 Synthesis of HA-CHO 68 3.2.2 Synthesis of R6-NH2 68 3.2.3. Synthesis of HA-R6 68 3.2.4. Preparation of HA-R6 nanoparticles 70 3.2.5. In vitro drug release assay 70 3.2.6. Characterization of HA-R6 nanoparticles 71 3.2.7. Drug loading content (DLC) and drug loading efficiency (DLE) 71 3.2.8. Cytotoxicity study 72 3.2.9. Cellular uptake study 73 Chapter 4: Results and Discussion 74 4.1. Synthesis and characterization of HA-R6 prodrug 74 4.2 Synthesis and characterization of HA-R6 nanoparticles 79 4.3 pH-responsive drug release assay 80 4.4. In vitro studies 82 4.4.1. Cytotoxicity study 82 4.4.2. Cellular uptake and bioimaging 83 Chapter 5: Conclusion and Outlook 86 5.1. Conclusion 86 5.2. Outlook 86 References 87

1. Blackadar, C. B., Historical review of the causes of cancer. World journal of clinical oncology 2016, 7 (1), 54-86.
2. Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, A., Assessment of the evolution of cancer treatment therapies. Cancers 2011, 3 (3), 3279-330.
3. Debela, D. T.; Muzazu, S. G.; Heraro, K. D.; Ndalama, M. T.; Mesele, B. W.; Haile, D. C.; Kitui, S. K.; Manyazewal, T., New approaches and procedures for cancer treatment: Current perspectives. SAGE open medicine 2021, 9, 20503121211034366.
4. Pucci, C.; Martinelli, C.; Ciofani, G., Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience 2019, 13, 961.
5. Anderson, N. M.; Simon, M. C., The tumor microenvironment. Current biology : CB 2020, 30 (16), R921-r925.
6. Labani-Motlagh, A.; Ashja-Mahdavi, M.; Loskog, A., The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. 2020, 11.
7. Jin, M.-Z.; Jin, W.-L., The updated landscape of tumor microenvironment and drug repurposing. Signal Transduction and Targeted Therapy 2020, 5 (1), 166.
8. Roma-Rodrigues, C.; Mendes, R.; Baptista, P. V.; Fernandes, A. R., Targeting Tumor Microenvironment for Cancer Therapy. Int J Mol Sci 2019, 20 (4).
9. Xiao, Y.; Yu, D., Tumor microenvironment as a therapeutic target in cancer. Pharmacology & therapeutics 2021, 221, 107753.
10. Zhong, S.; Jeong, J.-H.; Chen, Z.; Chen, Z.; Luo, J.-L., Targeting Tumor Microenvironment by Small-Molecule Inhibitors. Translational Oncology 2020, 13 (1), 57-69.
11. Kanamala, M. In Development of PEG-sheddable pH-sensitive liposomes for cytoplasmic drug delivery to pancreatic cancer, 2018.
12. Cupic, K. I.; Rennick, J. J.; Johnston, A. P. R.; Such, G. K. J. N., Controlling endosomal escape using nanoparticle composition: current progress and future perspectives. 2019, 14 2, 215-223.
13. Zhou, W.; Jia, Y.; Liu, Y.; Chen, Y.; Zhao, P., Tumor Microenvironment-Based Stimuli-Responsive Nanoparticles for Controlled Release of Drugs in Cancer Therapy. Pharmaceutics 2022, 14 (11).
14. Qiao, Z.-Y.; Gao, Y.-J., Acid- and Redox-Responsive Smart Polymeric Nanomaterials for Controlled Drug Delivery. In In Vivo Self-Assembly Nanotechnology for Biomedical Applications, Wang, H.; Li, L.-L., Eds. Springer Singapore: Singapore, 2018; pp 115-154.
15. Chu, S.; Shi, X.; Tian, Y.; Gao, F., pH-Responsive Polymer Nanomaterials for Tumor Therapy. 2022, 12.
16. Huang, G.; Huang, H., Application of hyaluronic acid as carriers in drug delivery. Drug Deliv 2018, 25 (1), 766-772.
17. Passi, A.; Vigetti, D., Hyaluronan as tunable drug delivery system. Advanced Drug Delivery Reviews 2019, 146, 83-96.
18. Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R., Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016, 116 (9), 5338-5431.
19. Srinivasarao, M.; Low, P. S., Ligand-Targeted Drug Delivery. Chem Rev 2017, 117 (19), 12133-12164.
20. Huang, X.; Ma, Y.; Li, Y.; Han, F.; Lin, W., Targeted Drug Delivery Systems for Kidney Diseases. 2021, 9.
21. Tewabe, A.; Abate, A.; Tamrie, M.; Seyfu, A.; Abdela Siraj, E., Targeted Drug Delivery - From Magic Bullet to Nanomedicine: Principles, Challenges, and Future Perspectives. Journal of multidisciplinary healthcare 2021, 14, 1711-1724.
22. Manzari, M. T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D. A., Targeted drug delivery strategies for precision medicines. Nature Reviews Materials 2021, 6 (4), 351-370.
23. Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced emission. Chemical Society Reviews 2011, 40 (11), 5361-5388.
24. Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z., Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 2014, 26 (31), 5429-79.
25. Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z., Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015, 115 (21), 11718-11940.
26. Qian, J.; Tang, B. Z., AIE Luminogens for Bioimaging and Theranostics: From Organelles to Animals. Chem 2017, 3 (1), 56-91.
27. Shao, A.; Xie, Y.; Zhu, S.; Guo, Z.; Zhu, S.; Guo, J.; Shi, P.; James, T. D.; Tian, H.; Zhu, W.-H., Far-Red and Near-IR AIE-Active Fluorescent Organic Nanoprobes with Enhanced Tumor-Targeting Efficacy: Shape-Specific Effects. 2015, 54 (25), 7275-7280.
28. Lu, H.; Zheng, Y.; Zhao, X.; Wang, L.; Ma, S.; Han, X.; Xu, B.; Tian, W.; Gao, H., Highly Efficient Far Red/Near-Infrared Solid Fluorophores: Aggregation-Induced Emission, Intramolecular Charge Transfer, Twisted Molecular Conformation, and Bioimaging Applications. Angew Chem Int Ed Engl 2016, 55 (1), 155-9.
29. Chen, Y.; Zhang, W.; Zhao, Z.; Cai, Y.; Gong, J.; Kwok, R. T. K.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z., An Easily Accessible Ionic Aggregation-Induced Emission Luminogen with Hydrogen-Bonding-Switchable Emission and Wash-Free Imaging Ability. 2018, 57 (18), 5011-5015.
30. Zhao, Z.; Chan, C. Y. K.; Chen, S.; Deng, C.; Lam, J. W. Y.; Jim, C. K. W.; Hong, Y.; Lu, P.; Chang, Z.; Chen, X.; Lu, P.; Kwok, H. S.; Qiu, H.; Tang, B. Z., Using tetraphenylethene and carbazole to create efficient luminophores with aggregation-induced emission, high thermal stability, and good hole-transporting property. J Mater Chem 2012, 22 (10), 4527-4534.
31. Wang, J.; Mei, J.; Hu, R.; Sun, J. Z.; Qin, A.; Tang, B. Z., Click Synthesis, Aggregation-Induced Emission, E/Z Isomerization, Self-Organization, and Multiple Chromisms of Pure Stereoisomers of a Tetraphenylethene-Cored Luminogen. Journal of the American Chemical Society 2012, 134 (24), 9956-9966.
32. Mei, J.; Huang, Y.; Tian, H., Progress and Trends in AIE-Based Bioprobes: A Brief Overview. Acs Appl Mater Inter 2018, 10 (15), 12217-12261.
33. Qi, J.; Chen, C.; Ding, D.; Tang, B. Z., Aggregation-Induced Emission Luminogens: Union Is Strength, Gathering Illuminates Healthcare. 2018, 7 (20), 1800477.
34. Bu, F.; Wang, E.; Peng, Q.; Hu, R.; Qin, A.; Zhao, Z.; Tang, B. Z., Structural and Theoretical Insights into the AIE Attributes of Phosphindole Oxide: The Balance Between Rigidity and Flexibility. 2015, 21 (11), 4440-4449.
35. Qi, J.; Sun, C.; Zebibula, A.; Zhang, H.; Kwok, R. T. K.; Zhao, X.; Xi, W.; Lam, J. W. Y.; Qian, J.; Tang, B. Z., Real-Time and High-Resolution Bioimaging with Bright Aggregation-Induced Emission Dots in Short-Wave Infrared Region. 2018, 30 (12), 1706856.
36. Zheng, Z.; Zhang, T.; Liu, H.; Chen, Y.; Kwok, R. T. K.; Ma, C.; Zhang, P.; Sung, H. H. Y.; Williams, I. D.; Lam, J. W. Y.; Wong, K. S.; Tang, B. Z., Bright Near-Infrared Aggregation-Induced Emission Luminogens with Strong Two-Photon Absorption, Excellent Organelle Specificity, and Efficient Photodynamic Therapy Potential. ACS Nano 2018, 12 (8), 8145-8159.
37. He, T.; Niu, N.; Chen, Z.; Li, S.; Liu, S.; Li, J., Novel Quercetin Aggregation-Induced Emission Luminogen (AIEgen) with Excited-State Intramolecular Proton Transfer for In Vivo Bioimaging. Adv Funct Mater 2018, 28 (11), 1706196.
38. Gu, Y.; Zhao, Z.; Su, H.; Zhang, P.; Liu, J.; Niu, G.; Li, S.; Wang, Z.; Kwok, R. T. K.; Ni, X.-L.; Sun, J.; Qin, A.; Lam, Jacky W. Y.; Tang, B. Z., Exploration of biocompatible AIEgens from natural resources. Chemical Science 2018, 9 (31), 6497-6502.
39. Liu, B.; Zhang, R., Aggregation induced emission: Concluding Remarks. Faraday Discussions 2017, 196 (0), 461-472.
40. Jiang, X.; Gao, H.; Zhang, X.; Pang, J.; Li, Y.; Li, K.; Wu, Y.; Li, S.; Zhu, J.; Wei, Y.; Jiang, L., Highly-sensitive optical organic vapor sensor through polymeric swelling induced variation of fluorescent intensity. Nature Communications 2018, 9 (1), 3799.
41. Chen, Y.; Min, X.; Zhang, X.; Zhang, F.; Lu, S.; Xu, L.-P.; Lou, X.; Xia, F.; Zhang, X.; Wang, S., AIE-based superwettable microchips for evaporation and aggregation induced fluorescence enhancement biosensing. Biosensors and Bioelectronics 2018, 111, 124-130.
42. Ding, D.; Li, K.; Liu, B.; Tang, B. Z., Bioprobes Based on AIE Fluorogens. Accounts Chem Res 2013, 46 (11), 2441-2453.
43. Kwok, R. T. K.; Leung, C. W. T.; Lam, J. W. Y.; Tang, B. Z., Biosensing by luminogens with aggregation-induced emission characteristics. Chemical Society Reviews 2015, 44 (13), 4228-4238.
44. Liang, J.; Tang, B. Z.; Liu, B., Specific light-up bioprobes based on AIEgen conjugates. Chemical Society Reviews 2015, 44 (10), 2798-2811.
45. Chen, S.; Wang, H.; Hong, Y.; Tang, B. Z., Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging. Materials Horizons 2016, 3 (4), 283-293.
46. Feng, G.; Liu, B., Multifunctional AIEgens for Future Theranostics. 2016, 12 (47), 6528-6535.
47. Lou, X.; Zhao, Z.; Tang, B. Z., Organic Dots Based on AIEgens for Two-Photon Fluorescence Bioimaging. 2016, 12 (47), 6430-6450.
48. Gao, M.; Tang, B. Z., Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives. ACS Sensors 2017, 2 (10), 1382-1399.
49. Yuan, Y.; Liu, B., Visualization of drug delivery processes using AIEgens. Chemical Science 2017, 8 (4), 2537-2546.
50. Gao, M.; Tang, B. Z., Aggregation-induced emission probes for cancer theranostics. Drug Discovery Today 2017, 22 (9), 1288-1294.
51. Yi, X.; Li, J.; Zhu, Z.; Liu, Q.; Xue, Q.; Ding, D., In vivo cancer research using aggregation-induced emission organic nanoparticles. Drug Discovery Today 2017, 22 (9), 1412-1420.
52. Gao, H.; Zhang, X.; Chen, C.; Li, K.; Ding, D., Unity Makes Strength: How Aggregation-Induced Emission Luminogens Advance the Biomedical Field. Advanced Biosystems 2018, 2 (9), 1800074.
53. Gao, X.; Sun, J. Z.; Tang, B. Z., Reaction-based AIE-active Fluorescent Probes for Selective Detection and Imaging. 2018, 58 (8), 845-859.
54. Feng, G.; Liu, B., Aggregation-Induced Emission (AIE) Dots: Emerging Theranostic Nanolights. Accounts Chem Res 2018, 51 (6), 1404-1414.
55. Liu, J.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced Emission of Silole Molecules and Polymers: Fundamental and Applications. J Inorg Organomet P 2009, 19 (3), 249-285.
56. Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced emission: phenomenon, mechanism and applications. Chemical Communications 2009, (29), 4332-4353.
57. Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Tang, B. Z., Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J Mater Chem 2010, 20 (10), 1858-1867.
58. Hong, Y.; Häußler, M.; Lam, J. W. Y.; Li, Z.; Sin, K. K.; Dong, Y.; Tong, H.; Liu, J.; Qin, A.; Renneberg, R.; Tang, B. Z., Label-Free Fluorescent Probing of G-Quadruplex Formation and Real-Time Monitoring of DNA Folding by a Quaternized Tetraphenylethene Salt with Aggregation-Induced Emission Characteristics. Chemistry – A European Journal 2008, 14 (21), 6428-6437.
59. Tong, H.; Hong, Y.; Dong, Y.; Häussler, M.; Li, Z.; Lam, J. W. Y.; Dong, Y.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z., Protein Detection and Quantitation by Tetraphenylethene-Based Fluorescent Probes with Aggregation-Induced Emission Characteristics. The Journal of Physical Chemistry B 2007, 111 (40), 11817-11823.
60. Wang, M.; Gu, X.; Zhang, G.; Zhang, D.; Zhu, D., Convenient and Continuous Fluorometric Assay Method for Acetylcholinesterase and Inhibitor Screening Based on the Aggregation-Induced Emission. Analytical Chemistry 2009, 81 (11), 4444-4449.
61. Gu, X.; Zhang, G.; Zhang, D., A new ratiometric fluorescence detection of heparin based on the combination of the aggregation-induced fluorescence quenching and enhancement phenomena. Analyst 2012, 137 (2), 365-369.
62. Kwok, R. T. K.; Geng, J.; Lam, J. W. Y.; Zhao, E.; Wang, G.; Zhan, R.; Liu, B.; Tang, B. Z., Water-soluble bioprobes with aggregation-induced emission characteristics for light-up sensing of heparin. Journal of Materials Chemistry B 2014, 2 (26), 4134-4141.
63. Qin, W.; Ding, D.; Liu, J.; Yuan, W. Z.; Hu, Y.; Liu, B.; Tang, B. Z., Biocompatible Nanoparticles with Aggregation-Induced Emission Characteristics as Far-Red/Near-Infrared Fluorescent Bioprobes for In Vitro and In Vivo Imaging Applications. Adv Funct Mater 2012, 22 (4), 771-779.
64. Chen, S.; Hong, Y.; Liu, Y.; Liu, J.; Leung, C. W. T.; Li, M.; Kwok, R. T. K.; Zhao, E.; Lam, J. W. Y.; Yu, Y.; Tang, B. Z., Full-Range Intracellular pH Sensing by an Aggregation-Induced Emission-Active Two-Channel Ratiometric Fluorogen. Journal of the American Chemical Society 2013, 135 (13), 4926-4929.
65. Shi, H.; Kwok, R. T. K.; Liu, J.; Xing, B.; Tang, B. Z.; Liu, B., Real-Time Monitoring of Cell Apoptosis and Drug Screening Using Fluorescent Light-Up Probe with Aggregation-Induced Emission Characteristics. Journal of the American Chemical Society 2012, 134 (43), 17972-17981.
66. Gu, X.; Zhao, E.; Zhao, T.; Kang, M.; Gui, C.; Lam, J. W. Y.; Du, S.; Loy, M. M. T.; Tang, B. Z., A Mitochondrion-Specific Photoactivatable Fluorescence Turn-On AIE-Based Bioprobe for Localization Super-Resolution Microscope. 2016, 28 (25), 5064-5071.
67. Wang, D.; Qian, J.; He, S.; Park, J. S.; Lee, K.-S.; Han, S.; Mu, Y., Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging. Biomaterials 2011, 32 (25), 5880-5888.
68. Zhao, E.; Hong, Y.; Chen, S.; Leung, C. W. T.; Chan, C. Y. K.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z., Highly Fluorescent and Photostable Probe for Long-Term Bacterial Viability Assay Based on Aggregation-Induced Emission. 2014, 3 (1), 88-96.
69. Liu, J.; Chen, C.; Ji, S.; Liu, Q.; Ding, D.; Zhao, D.; Liu, B., Long wavelength excitable near-infrared fluorescent nanoparticles with aggregation-induced emission characteristics for image-guided tumor resection. Chemical Science 2017, 8 (4), 2782-2789.
70. Wang, X.; Morales, A. R.; Urakami, T.; Zhang, L.; Bondar, M. V.; Komatsu, M.; Belfield, K. D., Folate Receptor-Targeted Aggregation-Enhanced Near-IR Emitting Silica Nanoprobe for One-Photon in Vivo and Two-Photon ex Vivo Fluorescence Bioimaging. Bioconjugate Chem 2011, 22 (7), 1438-1450.
71. Geng, J.; Li, K.; Ding, D.; Zhang, X.; Qin, W.; Liu, J.; Tang, B. Z.; Liu, B., Lipid-PEG-Folate Encapsulated Nanoparticles with Aggregation Induced Emission Characteristics: Cellular Uptake Mechanism and Two-Photon Fluorescence Imaging. 2012, 8 (23), 3655-3663.
72. Zhang, X.; Zhang, X.; Wang, S.; Liu, M.; Zhang, Y.; Tao, L.; Wei, Y., Facile Incorporation of Aggregation-Induced Emission Materials into Mesoporous Silica Nanoparticles for Intracellular Imaging and Cancer Therapy. Acs Appl Mater Inter 2013, 5 (6), 1943-1947.
73. Cheng, Y.; Sun, C.; Ou, X.; Liu, B.; Lou, X.; Xia, F., Dual-targeted peptide-conjugated multifunctional fluorescent probe with AIEgen for efficient nucleus-specific imaging and long-term tracing of cancer cells. Chemical Science 2017, 8 (6), 4571-4578.
74. Zhang, R.; Sung, S. H. P.; Feng, G.; Zhang, C.-J.; Kenry; Tang, B. Z.; Liu, B., Aggregation-Induced Emission Probe for Specific Turn-On Quantification of Soluble Transferrin Receptor: An Important Disease Marker for Iron Deficiency Anemia and Kidney Diseases. Analytical Chemistry 2018, 90 (2), 1154-1160.
75. Min, X.; Zhang, M.; Huang, F.; Lou, X.; Xia, F., Live Cell MicroRNA Imaging Using Exonuclease III-Aided Recycling Amplification Based on Aggregation-Induced Emission Luminogens. Acs Appl Mater Inter 2016, 8 (14), 8998-9003.
76. Chen, J.; Jiang, H.; Zhou, H.; Hu, Z.; Niu, N.; Shahzad, S. A.; Yu, C., Specific detection of cancer cells through aggregation-induced emission of a light-up bioprobe. Chemical Communications 2017, 53 (15), 2398-2401.
77. Shi, X.; Yu, C. Y. Y.; Su, H.; Kwok, R. T. K.; Jiang, M.; He, Z.; Lam, J. W. Y.; Tang, B. Z., A red-emissive antibody–AIEgen conjugate for turn-on and wash-free imaging of specific cancer cells. Chemical Science 2017, 8 (10), 7014-7024.
78. Leung, C. W. T.; Hong, Y.; Chen, S.; Zhao, E.; Lam, J. W. Y.; Tang, B. Z., A Photostable AIE Luminogen for Specific Mitochondrial Imaging and Tracking. Journal of the American Chemical Society 2013, 135 (1), 62-65.
79. Situ, B.; Chen, S.; Zhao, E.; Leung, C. W. T.; Chen, Y.; Hong, Y.; Lam, J. W. Y.; Wen, Z.; Liu, W.; Zhang, W.; Zheng, L.; Tang, B. Z., Real-Time Imaging of Cell Behaviors in Living Organisms by a Mitochondria-Targeting AIE Fluorogen. Adv Funct Mater 2016, 26 (39), 7132-7138.
80. Li, K.; Jiang, Y.; Ding, D.; Zhang, X.; Liu, Y.; Hua, J.; Feng, S.-S.; Liu, B., Folic acid-functionalized two-photon absorbing nanoparticles for targeted MCF-7 cancer cell imaging. Chemical Communications 2011, 47 (26), 7323-7325.
81. Geng, J.; Li, K.; Qin, W.; Ma, L.; Gurzadyan, G. G.; Tang, B. Z.; Liu, B., Eccentric Loading of Fluorogen with Aggregation-Induced Emission in PLGA Matrix Increases Nanoparticle Fluorescence Quantum Yield for Targeted Cellular Imaging. 2013, 9 (11), 2012-2019.
82. Zhang, Y.; Chen, Y.; Li, X.; Zhang, J.; Chen, J.; Xu, B.; Fu, X.; Tian, W., Folic acid-functionalized AIE Pdots based on amphiphilic PCL-b-PEG for targeted cell imaging. Polym Chem-Uk 2014, 5 (12), 3824-3830.
83. Shah, S. S.; Singh, A. K.; Banerjee, S.; Singha, T.; Nair, A. V.; Ojha, M.; Mondal, A.; Datta, P. K.; Singh, N. D. P., Dihydropyrrolo[3,2-b]pyrrole-3,6-dicarbaldehyde-Based Two-Photon-Responsive Nanoparticles for Effective Photodynamic Therapy. Acs Appl Nano Mater 2022, 5 (7), 9594-9603.
84. Singh, A. K.; Banerjee, S.; Nair, A. V.; Ray, S.; Ojha, M.; Mondal, A.; Singh, N. D. P., Green Light-Activated Single-Component Organic Fluorescence-Based Nano-Drug Delivery System for Dual Uncaging of Anticancer Drugs. Acs Appl Bio Mater 2022, 5 (3), 1202-1209.
85. Qin, W.; Wu, Y.; Hu, Y.; Dong, Y.; Hao, T.; Zhang, C., TPE-Based Peptide Micelles for Targeted Tumor Therapy and Apoptosis Monitoring. Acs Appl Bio Mater 2021, 4 (1), 1038-1044.
86. Cao, Z.; Liang, X.; Chen, H.; Gao, M.; Zhao, Z.; Chen, X.; Xu, C.; Qu, G.; Qi, D.; Tang, B. Z., Bright and biocompatible AIE polymeric nanoparticles prepared from miniemulsion for fluorescence cell imaging. Polym Chem-Uk 2016, 7 (35), 5571-5578.
87. Wan, Q.; Xu, D.; Mao, L.; He, Z.; Zeng, G.; Shi, Y.; Deng, F.; Liu, M.; Zhang, X.; Wei, Y., Facile Fabrication of AIE-Active Fluorescent Polymeric Nanoparticles with Ultra-Low Critical Micelle Concentration Based on Ce(IV) Redox Polymerization for Biological Imaging Applications. Macromol Rapid Comm 2017, 38 (8), 1600752.
88. Qi, J.; Sun, C.; Li, D.; Zhang, H.; Yu, W.; Zebibula, A.; Lam, J. W. Y.; Xi, W.; Zhu, L.; Cai, F.; Wei, P.; Zhu, C.; Kwok, R. T. K.; Streich, L. L.; Prevedel, R.; Qian, J.; Tang, B. Z., Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy. ACS Nano 2018, 12 (8), 7936-7945.
89. Song, Z.; Mao, D.; Sung, S. H. P.; Kwok, R. T. K.; Lam, J. W. Y.; Kong, D.; Ding, D.; Tang, B. Z., Activatable Fluorescent Nanoprobe with Aggregation-Induced Emission Characteristics for Selective In Vivo Imaging of Elevated Peroxynitrite Generation. Advanced Materials 2016, 28 (33), 7249-7256.
90. Shi, H.; Zhao, N.; Ding, D.; Liang, J.; Tang, B. Z.; Liu, B., Fluorescent light-up probe with aggregation-induced emission characteristics for in vivo imaging of cell apoptosis. Organic & Biomolecular Chemistry 2013, 11 (42), 7289-7296.
91. He, X.; Zhao, Z.; Xiong, L.-H.; Gao, P. F.; Peng, C.; Li, R. S.; Xiong, Y.; Li, Z.; Sung, H. H. Y.; Williams, I. D.; Kwok, R. T. K.; Lam, J. W. Y.; Huang, C. Z.; Ma, N.; Tang, B. Z., Redox-Active AIEgen-Derived Plasmonic and Fluorescent Core@Shell Nanoparticles for Multimodality Bioimaging. Journal of the American Chemical Society 2018, 140 (22), 6904-6911.
92. Yuan, Y.; Kwok, R. T. K.; Zhang, R.; Tang, B. Z.; Liu, B., Targeted theranostic prodrugs based on an aggregation-induced emission (AIE) luminogen for real-time dual-drug tracking. Chemical Communications 2014, 50 (78), 11465-11468.
93. Yuan, Y.; Chen, Y.; Tang, B. Z.; Liu, B., A targeted theranostic platinum(iv) prodrug containing a luminogen with aggregation-induced emission (AIE) characteristics for in situ monitoring of drug activation. Chemical Communications 2014, 50 (29), 3868-3870.
94. Yu, G.; Zhao, R.; Wu, D.; Zhang, F.; Shao, L.; Zhou, J.; Yang, J.; Tang, G.; Chen, X.; Huang, F., Pillar[5]arene-based amphiphilic supramolecular brush copolymers: fabrication, controllable self-assembly and application in self-imaging targeted drug delivery. Polym Chem-Uk 2016, 7 (40), 6178-6188.
95. Zhao, Y.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z., A highly fluorescent AIE-active theranostic agent with anti-tumor activity to specific cancer cells. Nanoscale 2016, 8 (25), 12520-12523.
96. Wang, E.; Zhao, E.; Hong, Y.; Lam, J. W. Y.; Tang, B. Z., A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae. Journal of Materials Chemistry B 2014, 2 (14), 2013-2019.
97. Du, W.; Liu, X.; Liu, L.; Lam, J. W. Y.; Tang, B. Z., Photoresponsive Polymers with Aggregation-Induced Emission. ACS Applied Polymer Materials 2021, 3 (5), 2290-2309.
98. Ye, Z.; He, W.; Zhang, Z.; Qiu, Z.; Zhao, Z.; Tang, B. Z., AIEgens for microorganism-related visualization and therapy. Interdisciplinary Medicine 2023, n/a (n/a), e20220011.
99. Wang, W.; Wu, F.; Mohammadniaei, M.; Zhang, M.; Li, Y.; Sun, Y.; Tang, B. Z., Genetically edited T-cell membrane coated AIEgen nanoparticles effectively prevents glioblastoma recurrence. Biomaterials 2023, 293, 121981.
100. Wang, Y.; Niu, N.; Huang, Y.; Song, S.; Tan, H.; Wang, L.; Wang, D.; Tang, B. Z., Three-Pronged Attack by Hybrid Nanoplatform Involving MXenes, Upconversion Nanoparticle and Aggregation-Induced Emission Photosensitizer for Potent Cancer Theranostics. 2022, 6 (8), 2200393.
101. Xu, C.; Zou, H.; Hu, L.; Shen, H.; Sung, H. H. Y.; Feng, H.; Kwok, R. T. K.; Lam, J. W. Y.; Zheng, L.; Tang, B. Z., A Photoactivatable AIEgen for Selective Imaging and Killing of Estrogen Receptor-Positive Cells. ACS Materials Letters 2022, 4 (9), 1831-1839.
102. Zhuang, Z.; Meng, Z.; Li, J.; Shen, P.; Dai, J.; Lou, X.; Xia, F.; Tang, B. Z.; Zhao, Z., Antibacterial Theranostic Agents with Negligible Living Cell Invasiveness: AIE-Active Cationic Amphiphiles Regulated by Alkyl Chain Engineering. ACS Nano 2022, 16 (8), 11912-11930.
103. Wang, B.; Wang, L.; Liu, X.; Zhu, J.; Hu, R.; Qin, A.; Tang, B. Z., AIE-Active Antibiotic Photosensitizer with Enhanced Fluorescence in Bacteria Infected Cells and Better Therapy Effect toward Drug-Resistant Bacteria. Acs Appl Bio Mater 2022, 5 (10), 4955-4964.
104. Li, C.; Jiang, G.; Yu, J.; Ji, W.; Liu, L.; Zhang, P.; Du, J.; Zhan, C.; Wang, J.; Tang, B. Z., Fluorination Enhances NIR-II Emission and Photothermal Conversion Efficiency of Phototheranostic Agents for Imaging-Guided Cancer Therapy. 2023, 35 (3), 2208229.
105. Zhang, Z.; He, W.; Deng, Z.; Liu, Y.; Wen, H.; Wang, Y.; Ye, Z.; Kin Kwok, R. T.; Qiu, Z.; Zhao, Z.; Tang, B. Z., A clickable AIEgen for visualization of macrophage-microbe interaction. Biosensors and Bioelectronics 2022, 216, 114614.
106. Mintzer, M. A.; Simanek, E. E., Nonviral Vectors for Gene Delivery. Chem Rev 2009, 109 (2), 259-302.
107. Ding, D.; Goh, C. C.; Feng, G.; Zhao, Z.; Liu, J.; Liu, R.; Tomczak, N.; Geng, J.; Tang, B. Z.; Ng, L. G.; Liu, B., Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging. Adv Mater 2013, 25 (42), 6083-8.
108. Chen, Y.; Li, M.; Hong, Y.; Lam, J. W.; Zheng, Q.; Tang, B. Z., Dual-modal MRI contrast agent with aggregation-induced emission characteristic for liver specific imaging with long circulation lifetime. ACS Appl Mater Interfaces 2014, 6 (13), 10783-91.
109. Horton, N. G.; Wang, K.; Kobat, D.; Clark, C. G.; Wise, F. W.; Schaffer, C. B.; Xu, C., In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photonics 2013, 7 (3), 205-209.
110. Yuan, Y.; Feng, G.; Qin, W.; Tang, B. Z.; Liu, B., Targeted and image-guided photodynamic cancer therapy based on organic nanoparticles with aggregation-induced emission characteristics. Chemical Communications 2014, 50 (63), 8757-8760.
111. Hu, F.; Huang, Y.; Zhang, G.; Zhao, R.; Yang, H.; Zhang, D., Targeted Bioimaging and Photodynamic Therapy of Cancer Cells with an Activatable Red Fluorescent Bioprobe. Analytical Chemistry 2014, 86 (15), 7987-7995.
112. Yuan, Y.; Zhang, C. J.; Gao, M.; Zhang, R.; Tang, B. Z.; Liu, B., Specific light-up bioprobe with aggregation-induced emission and activatable photoactivity for the targeted and image-guided photodynamic ablation of cancer cells. Angew Chem Int Ed Engl 2015, 54 (6), 1780-6.
113. Peng, L.; Gao, M.; Cai, X.; Zhang, R.; Li, K.; Feng, G.; Tong, A.; Liu, B., A fluorescent light-up probe based on AIE and ESIPT processes for β-galactosidase activity detection and visualization in living cells. Journal of Materials Chemistry B 2015, 3 (47), 9168-9172.
114. Sedgwick, A. C.; Wu, L.; Han, H.-H.; Bull, S. D.; He, X.-P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J., Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chemical Society Reviews 2018, 47 (23), 8842-8880.
115. Neises, B.; Steglich, W., Simple Method for the Esterification of Carboxylic Acids. 1978, 17 (7), 522-524.
116. Gao, M.; Hu, Q.; Feng, G.; Tang, B. Z.; Liu, B., A fluorescent light-up probe with “AIE + ESIPT” characteristics for specific detection of lysosomal esterase. Journal of Materials Chemistry B 2014, 2 (22), 3438-3442.
117. Chen, S.; Liu, J.; Liu, Y.; Su, H.; Hong, Y.; Jim, C. K. W.; Kwok, R. T. K.; Zhao, N.; Qin, W.; Lam, J. W. Y.; Wong, K. S.; Tang, B. Z., An AIE-active hemicyanine fluorogen with stimuli-responsive red/blue emission: extending the pH sensing range by “switch + knob” effect. Chemical Science 2012, 3 (6), 1804-1809.
118. Yan, L.; Zhang, Y.; Ji, G.; Ma, L.; Chen, J.; Xu, B.; Tian, W., Multifunctional polymer nanoparticles: ultra bright near-infrared fluorescence and strong magnetization and their biological applications. Rsc Adv 2016, 6 (70), 65426-65433.
119. Qian, J.; Zhu, Z.; Leung, C. W.; Xi, W.; Su, L.; Chen, G.; Qin, A.; Tang, B. Z.; He, S., Long-term two-photon neuroimaging with a photostable AIE luminogen. Biomed Opt Express 2015, 6 (4), 1477-86.

無法下載圖示
全文公開日期 2026/07/26 (校外網路)
全文公開日期 2026/07/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE