簡易檢索 / 詳目顯示

研究生: 郭峯廷
Feng-Ting Guo
論文名稱: 藉由時域相乘加總 (TMAS) 自相關提供高訊雜比的超快速超音波功率都普勒血流影像
Ultrasound Ultrafast Power Doppler Imaging with High Signal-to-Noise Ratio by Temporal Multiply-and-Sum (TMAS) Autocorrelation
指導教授: 沈哲州
Che-Chou Shen
口試委員: 李百祺
Pai-Chi Li
謝寶育
Bao-Yu Hsieh
廖愛禾
Ai-Ho Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 116
中文關鍵詞: 時間相乘加總法功率都普勒偵測同調性平面波複合高階自相關信號去相關性
外文關鍵詞: Temporal Multiply-and-Sum method, power Doppler, Coherent Plane Wave Compounding, higher-order autocorrelation, signal decorrelation
相關次數: 點閱:157下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於同調性平面波複合具有高幀率的特性,使得都普勒血流偵測可以使用更多都普勒集合長度 (ensemble) 以提高其估計可靠度,然而平面波成像因發射端未聚焦而受限於低訊雜比問題,且傳統血流功率估計使用的平方和計算方式只能降低雜訊變異而非實際雜訊位準,因此近年已有利用時間同調性來抑制雜訊的高階自相關血流功率估計方法被提出。
    在高階自相關法的基礎上,本文提出時域相乘加總法 (TMAS) 通過調整同調性參數 pt 值來增強時間同調性以進一步提高雜訊抑制效果,TMAS 可直接應用於現有的同調性平面波複合成像系統,與需要對接收通道或發射維度提取空間同調性信號的平面波自適應波束形成法在計算簡易性上具有優勢。
    結果顯示,在未超過奈奎斯取樣 (Nyquist) 流速的模擬設定下,使用 pt = 2.5 的 TMAS 影像訊雜比相比原始高階自相關影像最高可提升 8 dB,在實驗中 TMAS 影像訊雜比最高可提升 7 dB。然而TMAS高階自相關法的訊雜比提升能力會受到血流信號去相關性 (decorrelation) 的影響,這與 pt 值、流速、血流方向以及超音波聲束幾何有關。


    Coherent Plane Wave Compounding (CPWC) with its high frame rate enables reliable blood flow power imaging through the utilization of more ensemble frames for Doppler blood flow detection. However, unfocused plane wave imaging faces limitations in noise suppression. Also, the traditional power calculation using the sum of square reduces noise variance but not the actual noise level. The higher-lag autocorrelation method has been proposed to suppress incoherent noise by leveraging temporal coherence.
    This study proposes a novel Temporal Multiply-and-Sum (TMAS) approach to further enhance coherence of correlation pairs in the higher-lag equation by adjusting the parameter pt, leading to improved noise suppression. Unlike other adaptive beamforming methods, TMAS can be directly applied to CPWC imaging systems without requiring spatial coherence extraction from the receiving channels or transmission dimensions.
    Simulation results show that TMAS with pt = 2.5 improves the SNR by up to 8 dB compared to the original R(1) image. However, it is important to note that both TMAS and higher-lag methods are influenced by the decorrelation characteristics of the blood flow signal, which are dependent on factors such as the pt value, flow velocity, blood flow direction, and ultrasound beam width.

    致謝 III 摘要 IV ABSTRACT V 目錄 VI 圖目錄 IX 表目錄 XII 一、 緒論 1 1.1 醫用超音波 1 1.1.1 超音波基礎原理 1 1.1.2 聚焦發射 (Focused transmission) 3 1.1.3 延遲加總法 (Delay-and-Sum) 5 1.1.4 平面波成像技術 (Plane-wave imaging) 7 1.1.5 同調性平面波複合 9 1.2 基頻延遲相乘加總技術 11 1.2.1 應用於聚焦發射的基頻延遲相乘加總技術 11 1.2.2 參數p值與同調性的關係 12 1.2.3 應用於多角度平面波複合的基頻延遲相乘加總技術 13 1.3 都普勒血流偵測 14 1.3.1 都普勒效應 (Doppler effect) 14 1.3.2 彩色都普勒 (Color Doppler) 17 1.3.3 功率都普勒 (Power Doppler) 21 1.4 奇異值分解濾波器 (SVD Filter) 22 1.5 研究動機與目的 24 二、 先進成像技術與其血流偵測應用之相關文獻 26 2.1 Coherent Flow Power Doppler 26 2.2 DMAS with Complementary Subset Transmit 29 2.3 Debiasing-Based Noise Suppression 32 2.4 Spatiotemporal Non-Local Means Filtering 34 2.5 Speckle Decorrelation-Based Velocimetry 37 三、 研究原理與方法 40 3.1 高階自相關功率都普勒 40 3.1.1 傳統功率都普勒 40 3.1.2 同調性高階自相關功率都普勒 41 3.2 Temporal Multiply-and-Sum (TMAS) 43 3.2.1 TMAS算法 43 3.2.2 TMAS相位同調因子 45 3.2.3 TMAS算法流程 46 3.3 模擬架設方法 47 3.4 in-vitro仿體實驗架設方法 50 3.5 in-vivo兔子腎臟實驗架設方法 51 3.6 量化分析 52 四、 研究結果 53 4.1 模擬結果 53 4.1.1 隨機雜訊模擬驗證 53 4.1.2 Cross-view血管傾斜角30° (低流速) 55 4.1.3 Cross-view血管傾斜角30° (高流速) 58 4.1.4 Longi-view血管傾斜角 30° 61 4.1.5 Cross-view和Longi-view血管傾斜角 0° 63 4.2 in-vitro仿體實驗結果 66 4.3 in-vivo兔子腎臟實驗結果 68 五、 討論與結論 69 5.1 TMAS 同調性對功率都普勒影像品質的影響 69 5.1.1 TMAS 法於都普勒相關對與 ensemble 69 5.1.2 血流訊號變異與相關性 71 5.1.3 軸向流速與血流變異程度對血流去相關的影響 75 5.1.4 水平血流方向對血流去相關的影響 78 5.1.5 其他 TMAS 參數的影響 79 5.2 調整 ensemble 長度減少血流變異的影響 80 5.3 軸向取樣空間對血流訊號去相關性的影響 82 5.3.1 以cross-view 30° 模擬測試 82 5.3.2 層流梯度限制 Doppler gate size 調整效果 86 5.3.3 Doppler gate size 調整對於非層流模擬的改善有限 88 5.3.4 Doppler gate size 調整結果 90 5.4 SVD 濾波器對血流訊號去相關性的影響 91 5.4.1 SVD 濾波器閾值對於強組織運動雜波的抑制能力 91 5.4.2 SVD 濾波器閾值與血液流速關係 94 5.5 結論 97 六、 未來工作 98 參考文獻 99

    [1] L. Sandrin, S. Catheline, M. Tanter et al., “Time-resolved pulsed elastography with ultrafast ultrasonic imaging,” Ultrasonic imaging, vol. 21, no. 4, pp. 259-272, 1999.
    [2] J. Bercoff, G. Montaldo, T. Loupas et al., “Ultrafast compound Doppler imaging: Providing full blood flow characterization,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 58, no. 1, pp. 134-147, 2011.
    [3] G. Montaldo, M. Tanter, J. Bercoff et al., “Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 56, no. 3, pp. 489-506, 2009.
    [4] B.-F. Osmanski, M. Pernot, G. Montaldo et al., “Ultrafast Doppler imaging of blood flow dynamics in the myocardium,” IEEE transactions on medical imaging, vol. 31, no. 8, pp. 1661-1668, 2012.
    [5] I. K. Ekroll, A. Swillens, P. Segers et al., “Simultaneous quantification of flow and tissue velocities based on multi-angle plane wave imaging,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 60, no. 4, pp. 727-738, 2013.
    [6] E. Mace, G. Montaldo, B.-F. Osmanski et al., “Functional ultrasound imaging of the brain: theory and basic principles,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 60, no. 3, pp. 492-506, 2013.
    [7] S. Ricci, L. Bassi, and P. Tortoli, “Real-time vector velocity assessment through multigate Doppler and plane waves,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 61, no. 2, pp. 314-324, 2014.
    [8] B. Y. Yiu, and C. Alfred, “Least-squares multi-angle Doppler estimators for plane-wave vector flow imaging,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 63, no. 11, pp. 1733-1744, 2016.
    [9] I. K. Ekroll, M. M. Voormolen, O. K.-V. Standal et al., “Coherent compounding in Doppler imaging,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 62, no. 9, pp. 1634-1643, 2015.
    [10] C. H. Leow, E. Bazigou, R. J. Eckersley et al., “Flow velocity mapping using contrast enhanced high-frame-rate plane wave ultrasound and image tracking: Methods and initial in vitro and in vivo evaluation,” Ultrasound in medicine & biology, vol. 41, no. 11, pp. 2913-2925, 2015.
    [11] C.-C. Shen, and P.-Y. Hsieh, “Two-Dimensional Spatial Coherence for Ultrasonic DMAS Beamforming in Multi-Angle Plane-Wave Imaging,” Applied Sciences, vol. 9, pp. 3973, 09/23, 2019.
    [12] J. M. Rubin, R. O. Bude, P. L. Carson et al., “Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US,” Radiology, vol. 190, no. 3, pp. 853-856, 1994.
    [13] R. O. Bude, and J. M. Rubin, “Power Doppler sonography,” Radiology, vol. 200, no. 1, pp. 21-23, 1996.
    [14] F. W. Mauldin, D. Lin, and J. A. Hossack, “The Singular Value Filter: A General Filter Design Strategy for PCA-Based Signal Separation in Medical Ultrasound Imaging,” IEEE Transactions on Medical Imaging, vol. 30, no. 11, pp. 1951-1964, 2011.
    [15] P. Song, J. D. Trzasko, A. Manduca et al., “Accelerated Singular Value-Based Ultrasound Blood Flow Clutter Filtering With Randomized Singular Value Decomposition and Randomized Spatial Downsampling,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 64, no. 4, pp. 706-716, 2017.
    [16] C. Tremblay-Darveau, A. Bar-Zion, R. Williams et al., “Improved contrast-enhanced Power Doppler using a coherence-based estimator,” IEEE transactions on medical imaging, vol. 36, no. 9, pp. 1901-1911, 2017.
    [17] Y. L. Li, and J. J. Dahl, “Coherent flow power Doppler (CFPD): Flow detection using spatial coherence beamforming,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 62, no. 6, pp. 1022-1035, 2015.
    [18] C.-C. Shen, and Y.-C. Chu, “DMAS beamforming with complementary subset transmit for ultrasound coherence-based power Doppler detection in multi-angle plane-wave imaging,” Sensors, vol. 21, no. 14, pp. 4856, 2021.
    [19] C. Huang, P. Song, P. Gong et al., “Debiasing-Based Noise Suppression for Ultrafast Ultrasound Microvessel Imaging,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 66, no. 8, pp. 1281-1291, Aug, 2019.
    [20] L. Huang, J. Zhang, X. Wei et al., “Improved Ultrafast Power Doppler Imaging by Using Spatiotemporal Non-Local Means Filtering,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 69, no. 5, pp. 1610-1624, 2022.
    [21] J. Tang, D. D. Postnov, K. Kilic et al., “Functional Ultrasound Speckle Decorrelation-Based Velocimetry of the Brain,” Advanced Science, vol. 7, no. 18, pp. 2001044, 2020.
    [22] L. Pai-Chi, C. Chong-Jing, and Y. Chih-Kuang, “On velocity estimation using speckle decorrelation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 4, pp. 1084-1091, 2001.
    [23] Y. L. Li, D. Hyun, L. Abou-Elkacem et al., “Visualization of small-diameter vessels by reduction of incoherent reverberation with coherent flow power Doppler,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 63, no. 11, pp. 1878-1889, 2016.
    [24] J. Kang, D. Go, I. Song et al., “Ultrafast power Doppler imaging using frame-multiply-and-sum-based nonlinear compounding,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, no. 3, pp. 453-464, 2020.
    [25] C. Huang, P. Song, J. D. Trzasko et al., “Simultaneous noise suppression and incoherent artifact reduction in ultrafast ultrasound vascular imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, no. 6, pp. 2075-2085, 2021.
    [26] A. Stanziola, C. H. Leow, E. Bazigou et al., “ASAP: Super-contrast vasculature imaging using coherence analysis and high frame-rate contrast enhanced ultrasound,” IEEE transactions on medical imaging, vol. 37, no. 8, pp. 1847-1856, 2018.
    [27] C. H. Leow, N. L. Bush, A. Stanziola et al., “3-D microvascular imaging using high frame rate ultrasound and ASAP without contrast agents: Development and initial in vivo evaluation on nontumor and tumor models,” IEEE transactions on ultrasonics, ferroelectr

    QR CODE