簡易檢索 / 詳目顯示

研究生: 林猷貴
Yu-kuei Lin
論文名稱: 錳元素含量對中高強度鋁合金熱處理製程之影響
Effects of Mn content on the heat treatment process of medium-high strength aluminum alloys
指導教授: 吳翼貽
Ye-Ee Wu
口試委員: 顧鈞豪
Chun-Hao Koo
王朝正
Chaur-Jeng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 80
中文關鍵詞: AA7003熱處理錳元素T6T73RRA
外文關鍵詞: AA7003, Heat treatment, Mn, T6, T73, RRA
相關次數: 點閱:204下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究重點係應用低錳(Mn)、具較高鋅(Zn)/鎂(Mg)比的AA7003鋁合金,來探討Mn元素含量對中高強度鋁合金熱處理製程的影響。
    本研究內應用硬度量測、拉伸試驗、導電度量測、應力腐蝕測試、穿透式電子顯微鏡觀察(TEM)等方法,求出適用於AA7003鋁合金之T6、T73與RRA熱處理製程之參數組合,再將研究結果與AA7005鋁合金的研究結果及文獻資料進行分析比較,探討Mn、Zn、Mg等合金元素對熱處理製程之影響。
    研究結果得到適用於AA7003鋁合金各式熱處理參數分T6:470℃/40min.+80℃/14hr.+
    120℃/42hr.;T73:470℃40min.+80℃/14hr.+107℃/8hr.+168℃/7hr.;RRA:T6+180℃
    /8min.+120℃/42hr.。
    分析比較結果顯示低Mn含量之AA7003鋁合金具有較高的溶質原子(Zn、Mg)擴散速率,且AA7003鋁合金之Zn/Mg比高於AA7005鋁合金,具有較多機率形成MgZn2析出相。此二因素均可增進析出強化效率,縮短T6、T73及RRA熱處理製程的處理時間,惟低Mn的效果似較顯著。


    The objective of this study is to investigate the effect of Mn content on the heat treatment processes of medium-high aluminum alloys using AA7003 aluminum alloy, which possesses low Mn content and relatively high Zn/Mg ratio, as a carrier. Hardness test, tensile test, electrical conductivity measurement, transmission electron microscopy and stress corrosion test were conducted to seek for the most proper combinations of process parameters for the T6, T73 and RRA processes of AA7003 aluminum alloy.
    Experimental results were, then, compared with those previously obtained from AA7005 aluminum alloy and with results obtained from literature to study the effect of Mn content on the heat-treatment process of medium-high strength aluminum alloy. The most suitable process parameters for T6 are 470℃/40min.+80℃/14hr.+120℃/42hr.;for T73 are 470℃/40min.+80℃/14hr.
    +107℃/8hr.+168℃/7hr.; and for RRA are T6+180℃/8min.+120℃/42hr.。
    Analyses also showed that both low Mn content and high Zn/Mg ratio can improve the aging efficiency of aluminum alloy, and shorten the process time required for T6, T73 and RRA processes. But the effect produced by low Mn content is more prominent.

    目錄 摘要.....................................I ABSTRACT................................II 誌謝...................................III 目錄....................................IV 表目錄.................................VII 圖目錄................................VIII 第一章 前言............................1 1.1研究緣起..............................1 1.2研究目的..............................3 1.3研究方法..............................4 第二章 文獻探討........................5 2.1鋁合金簡介............................5 2.1.1鋁合金之分類........................5 2.1.2鋁合金之狀態命名....................7 2.2鋁合金之析出強化......................8 2.2.1析出強化基本原理....................8 2.2.2析出強化的相變化....................9 2.3應力腐蝕破壞.........................14 2.4熱處理 ...............................21 2.4.1 T6與T73熱處理.....................21 2.4.2 RRA熱處理.........................22 2.5合金元素之影響.......................26 第三章 實驗方法與步驟.................28 3.1實驗流程.............................28 3.2實驗材料.............................30 3.3熱處理流程...........................31 3.4金相組織觀察.........................34 3.5硬度試驗.............................34 3.6拉伸試驗.............................34 3.7導電度試驗...........................36 3.8應力腐蝕試驗.........................36 3.9掃描式電子顯微鏡.....................39 3.10穿透式電子顯微鏡微觀組織觀察........39 第四章 實驗結果與討論.................40 4.1 AA7003 T6熱處理製程.................40 4.1.1固溶處理...........................40 4.1.2自然時效處理.......................42 4.1.3低溫人工時效處理...................44 4.1.4自然時效T6(NA T6)熱處理製程......46 4.1.5二階段人工時效T6熱處理(AA T6)....48 4.2 T73熱處理製程.......................50 4.3 AA7003 RRA熱處理....................52 4.4應力腐蝕試驗.........................54 4.5經各式熱處理後機械性質之比較.........56 4.6 AA7003經熱處理後之顯微組織..........60 4.6.1 AA T6熱處理.......................60 4.6.2 T73熱處理.........................62 4.6.3 RRA熱處理.........................65 4.7錳元素含量對於7000系列鋁合金之影響...67 4.7.1錳元素含量對於熱處理之影響.........67 4.7.2 AA7003與AA7005機械性質之比較......70 第五章 結論...........................75 參考文獻................................76

    參考文獻
    [1]蔡幸甫,“輕金屬產業的發展趨勢”,工業材料,166期,pp.165-168,民國89年。
    [2]J. J. Thompson, E. S. Tankins and V. S. Agarwala, “ A Heat Treatment for
    Reducing Corrosion and Stress Corrosion Cracking susceptibilities in 7xxx
    Aluminum Alloys,” Materials Performance, Vol. 26, pp. 45-52, 1987.
    [3]T.H. Sanders, Jr. and E.A. Starke, Jr., “The Relationship of
    Microstructure to Monotonic and Cyclic Straining of Two Age Hardening
    Aluminum Alloys,” Metallurgical Trans.,Vol. 7A, pp. 1407-1418, 1976.
    [4]D. A. Hardwick, A. W. Thompson and I. M. Bernstein, “The effect of Copper
    Content and Microstructure on the Hydrogen Embrittlement of Al-6Zn-2Mg
    Alloys,” Corrosion Science, Vol. 28, pp.1127-1137, 1988.
    [5]Metals Handbook, 9th ed, ASM, Vol. 2, pp.208-218, 1979.
    [6]M.O. Speidel, “Stress Corrosion Cracking of Aluminum Alloys,”
    Metallurgical Transaction A, Vol. 6A, pp.631-642, 1975.
    [7]B. M. Cina, “Aluminum Industrial Products,” NASA Contractor Reports, U.
    S. Patent 3856584, 1974.
    [8]A. F. Oliveira, Jr., M. C. de Barros, K. R. Cardoso, D. N. Travessa, “The
    Effect of RRA on The Strength and SCC Resistance on AA7050 and AA7150
    Aluminum Alloys,” Mater. Sci. and Eng. A 379, pp. 321-326, 2004.
    [9]M .B. Hall and J. W. Martin, “Effect of Retrogression Temperature on the
    Properties of an RRA (Retrogressed and Re-aged) 7150 Aluminum Alloy,”
    Zeitschrift fuer Metallkunde, Vol. 85, pp. 134-139, 1994.
    [10]N.C. Danh, K. Rajan, and W. Wallace, “A TEM Study of Microstructural
    Changes during Retrogression and Reageing in 7075 Aluminum,” Metall.
    Trans. A, Vol. 14A, pp.1843-1850, 1983.
    [11]R. T. Holt, V. R. Parameswaran and W. Wallace, “RRA Treatment of 7075- T6
    Aluminum Components,” Canadian Aeronautics and Space Journal, Vol. 42,
    pp. 83-87, 1996.
    [12]X. Z. Li, V. Hansen, J. Gjφnnes and L.R.Wallenberg, “HREM Study and
    Structure Modeling of the Phase, the Hardening Precipitates in
    Commercial Al-Zn-Mg Alloys,” Acta Mater. 47, pp. 2651-2659, 1999.
    [13]J. Zander and R. Sandstrom, “One Parameter Model for Strength Properties
    of Hardenable Aluminum Alloys,” Meterials and Design. Vol. 29, pp.1540-
    1548, 2008.
    [14]K. C. Kim and S. W. Nam, “Effect of Mn-dispersoids on the Fatigue
    Mechanism in an Al-Zn-Mg Alloy,” Mater. Sci. and Eng. A 244, pp.257-262,
    1998.
    [15]D. S. Park and S. W. Nam, “Effects of Manganese Dispersoid on The
    Mechanical Properties in Al-Zn-Mg Alloys,” Journal of Materials Science,
    30, pp.1313-1320,1995.
    [16]黃清添,析出製程參數對AA7005鋁擠型合金機械性質與抗應力腐蝕之影響,國立台灣
    科技大學機研所碩士論文,民國92年。
    [17]徐煌仁、吳翼貽、林裕章,“AA7005鋁合金擠型材T6熱處理製程之研究”,金屬熱處
    理,第76期,第18-23頁,民國92年。
    [18]D. R. Askeland and P. P. Phule, The Science and Engineering of Materials,
    4th Edition, Thomson Learning, p. 594, 2003.
    [19]劉國雄,林樹均,葉均蔚,鋁及鋁合金的製造,民國74年。
    [20]D.A. Porter, K.E. Easterling, Phase Transformation in Metals and alloy,
    2nd, pp.144-147, 1992.
    [21]L.K. Berg, J. Gjφnnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo,
    D. Schryvers and L.R. Wallenberg, “GP-Zones in Al-Zn-Mg Alloys and their
    Role in Artificial Aging,” Acta Mater, Vol. 49,pp.3443-3451, 2001.
    [22]P. N. T. Unwin, R. B. Nicholson, “The Nucleation and Initial Stages of
    Growth of Grain Boundary Precipitates in Al-Zn-Mg and Al-Mg alloys,” Acta
    Metallurgica, Vol. 17, pp. 1379-1393, 1969.
    [23]J.C. Werenskiold, A. Deschamps, Y. Brechet, “Characterization and
    Modeling of Precipitation Kinetics in an Al-Zn-Mg Alloys,” Materials
    Science and Engineering A, Vol. A293, pp.267-274, 2000.
    [24]P. B. F. Brown, “Stress Corrosion Cracking of High Strength Steels, the
    Theory of Stress Corrosion Cracking in Alloys,” NATO, Brusels, pp.235-
    356, 1971.
    [25]Donald O. Sprowls, “Stress-Corrosion Cracking,” edited by Russel H.
    Jones, Materials Park, ASTM International, pp.363-365, 1992.
    [26]T. D. Burleigh, “The Postulated Mechanism for Stress Corrosion Cracking
    of Aluminum Alloys,” Corrosion, Vol. 47, pp.89-98, 1991.
    [27]R. Troiano, Transaction, ASM, Vol. 52, p.54, 1960.
    [28]W. H. Hunt, Jr. and J. T. Staley, “Light-Weight Alloys for Aerospace
    Application,” Warrendale, PA, TMS., pp.111-120, 1989.
    [29]J. Robinson and P. Flynn, “Effects of Thermal Treatments on the Stress
    Corrosion Cracking Resistance of Forgings of the Aluminum Alloy 7010,”
    Key Engineering Materials,Vol. 99-100, pp.143-150, 1995.
    [30]W. Wallace, J. C. Beddoes, M. C. deMalherbe, “A New Approach to the
    Problem of Stress Corrosion Cracking in 7075-T6 Aluminum,” Aero. And
    Space J., Vol. 27, pp.222-232, 1981.
    [31]Ohnishi and Shiota, “Heat Treatment To Reduce The Susceptibility Al-Zn-Mg-
    Cu Alloy to Stress Corrosion Cracking,” 輕金屬, Vol. 36, pp.647-656, 1986.
    [32]M. U. Islam and W. Wallace, “Retrogression and Re-aging Response of 7475
    Aluminum Alloy,” Met. Technol., Vol. 10, pp.386-392, 1983.
    [33]K. Rajan M. U. Islam and W. Wallace, “Retrogression and Reaging Response
    of 7475 Aluminum Alloy,” Met. Technol., Vol. 10, pp.386-392, 1983.
    [34]J.K. Park and A.J. Ardell, “Microstructures of the Commercial 7075 Al
    Alloys in the T651 and T7 Tempers,” Metallurgical Transaction A, Vol.
    14A, 1983, pp.1957-1965.
    [35]D. Altenpohl, “Aluminum and Aluminum Legierungen,” Springer Verlag, p.
    773, 1965.
    [36]B. Sarkar, M. Marek and E. A. Starke, Jr., “The Effect of Copper Content
    and Heat Treatment on the Stress Corrosion Characteristics of Al-6Zn-2Mg-X
    Cu Alloys,” Metallurgical Transaction A, Vol. 12A, pp. 1939-1943, 1981.
    [37]M. Kanno, Bin-lung Ou And Goroh Itoh, “Quench Sensitivity of Some Age-
    hardenable Aluminum Alloys,” Proceedings of the 2nd international
    conference of aluminum alloys, pp.1-6, 1990.
    [38]F. M. Mazzolani, Aluminum and Aluminum Structure, 2nd ed, pp.7-8, 1987.
    [39]K. Ito, N. Nakashima, “Effect of Fine Zr-Compound on the Formation of
    Structure of Solution Annealed Al-Zn-Mg -Cu alloys,” Journal of Japan
    Institute of Light Metals, Vol. 35, pp. 147-153, 1985.
    [40]ASTM Standards B597, “Standard Practice for Heat Treatment of Aluminum
    Alloys,”1992.
    [41]ASTM Standards B557-94,“Standard Test Methods of Tension Testing Wrought
    and Cast Aluminum- and Magnesium- Alloy Products,”1994.
    [42]International Standard 11782-2,“Corrosion of Metals and Alloys-Corrosion
    Fatigue Testing Part2, Crack Propagation Testing Using Precracked
    Specimens,”1998.
    [43]ASTM Standards G39-90,“Standard Practice for Preparation and Use of Bent-
    Beam Stress-Corrosion Test Specimens,” 1994.
    [44]ASTM Standards G103-89,“Standard Test Method for Performing a Stress-
    Corrosion Test of Low Copper Containing Al-Zn-Mg Alloys in Boiling 6%
    Sodium Chloride Solution,” 1994.
    [45]R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd
    Edition, pp.523-525, 1991.
    [46]Metals Handbook, Properties and Selection:Nonferrousalloys and Pure
    Metals, Ninth Edition, Vol. 2, p. 31, 1986.
    [47]V. Hansen, L. k. Berg, M. Knutson-Wedel, K. Stiller, G. Waterloo and J.
    Gjonnes, “Energy Filter Electron Diffraction and Atom Probe Investigation
    of Artificial Ageing in an Al-Zn-Mg Alloy,” in: H.A.C. Benavides, M.J.
    Yacaman (Eds.), Proceeding s of Electron Microscopy 1998, ICEM14, Cancun,
    Mexico, pp. 161-162, 1998.
    [48]吳翼貽,“高強度7000系列鋁合金之RRA熱處理”,金屬熱處理,第58期,第32-40
    頁,民國87年。

    QR CODE