簡易檢索 / 詳目顯示

研究生: 周敬軒
CHING-HSUAN CHOU
論文名稱: 以脂多醣誘導巨噬細胞模式評估包覆厚朴酚與伊曲康唑之聚縮酮微米顆粒之抗發炎作用
Combinatorial Anti-inflammatory Effects of Magnolol and Itraconazole Loaded Polyketal Microparticle on Lipopolysaccharide-induced Macrophage Cells
指導教授: 高震宇
CHEN-YU KAO
口試委員: 蔡協致
Hsieh-Chih Tsai
李曉屏
SHIAO-PIENG LEE
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 76
中文關鍵詞: 厚朴酚伊曲康唑聚縮酮抗發炎
外文關鍵詞: Magnolol, Itraconazole, Polyketal, Anti-inflammatory Effects
相關次數: 點閱:300下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

致命性疾病的成因往往相當複雜,當單一藥物無法有效根治疾病時,臨床上會投以兩種或兩種以上的藥物,期望透過不同機制藥物產生的加成作用或協同作用,藉此降低單一藥物的劑量及避免濃度過高造成毒性,並提高治癒疾病的機會,此種治療策略稱為合併療法。以急性肺損傷為例,其致病機制主要是肺部組織遭受外源性微生物感染及所伴隨產生之內源性過度發炎物質攻擊所致,目前尚無有效的治療策略,因此死亡率極高。如能開發一個能同時抑制細菌及過度產生之發炎物質的肺部藥物傳輸系統,將為急性肺損傷提供有利的治療策略。厚朴酚為具有抗發炎功效之中草藥萃取物,但其性質極為疏水、溶解度差及懸浮特性不佳。伊曲康唑則是三氮唑類抗真菌劑,性質同樣極疏水且懸浮性差,因此須藉由藥物載體來改善其疏水特性,提升厚朴酚與伊曲康唑之生物可利用率。本研究主要以生物可降解高分子聚縮酮(PK3)及聚乳酸-甘醇酸(PLGA)作為藥物載體包覆厚朴酚與伊曲康唑,製備出適合用於肺部傳輸之微米顆粒,藉由顆粒特性分析、體外釋放測試、細胞實驗抗發炎能力測試,評估顆粒的抗發炎的效果。
研究結果顯示,本研究成功開發出同時包覆厚朴酚與伊曲康唑且適合肺部傳輸的藥物微米顆粒,其厚朴酚與伊曲康唑之藥物包覆率分別為69 %與50 %,且藥物經由包覆後皆改善了厚朴酚與伊曲康唑懸浮性不佳的問題,體外釋放的實驗中可以看出厚朴酚經由載體包覆後具有穩定釋放的效果,細胞實驗結果顯示,包覆厚朴酚顆粒皆具有降低發炎因子(NO)產生的效果。雖然包覆伊曲康唑與合併藥物的顆粒其抑制發炎效果並不顯著,但可能可以藉由抑制細菌生長達到抗發炎效果。


Combined therapy is combine tow or more drug to treat disease. Synergistic effect or additive effect is beneficial to treat disease effectively, and can avoid toxicity when high drug concentration. Acute lung injury (ALI) is a common disease and a high mortality rate. The pathogenesis is mainly because of the bacterial infection. And it will lead to pro-inflammatory cytokines secreted by activated neutrophils and macrophages. So, we think focus on bacterial infection and inhibit pro-inflammatory cytokines at the same time will be a favorable therapeutic direction. Magnolol is extracted by Chinese herbal has shown the ability anti-inflammatory. And itraconazole is a antifungal drug, it can inhibit bacteria grow. However, their hydrophobicity, poor solubility and poor suspension properties have hindered its success. Therefore, it needs drug carriers to improve its hydrophobic character and enhance its bioavailability. In this study, we use biodegradable polymer to prepare drug loaded microparticles which is suitable for pulmonary delivery.
The results showed that the microparticle can encapsulate magnolol and itraconazole together, the encapsulation efficiency of magnolol and itraconazole is 69% and 50% ,and the particle size of microparticles is suitable for pulmonary delivery. In vitro release show that indicate that the magnolol loaded microparticles can continuously release magnolol. And In vitro cell experiment shows that magnolol loaded microparticles have inhibitory effects on NO production from LPS-activated raw 264.7 cells. Although itraconazole and two drug loaded microparticle don’t have inhibitory effects on NO. But it may be able to reach anti-inflammatory effect by inhibit bacterial growth.

摘要 I ABSTRACT II 圖目錄 III 表目錄 V 第一章 緒論 1 第二章 文獻回顧 4 2.1 合併療法 4 2.2 急性肺損傷 5 2.2.1 急性肺損傷之病因 5 2.2.2 急性肺損傷之病理機制 6 2.2.3 急性肺損傷的治療方式 8 2.3 藥物傳輸系統 9 2.3.1 高分子材料載藥傳輸系統 10 2.3.2 藥物傳輸系統控制釋放之機制 10 2.3.3 肺部傳輸系統 11 2.3.4 巨噬細胞與微米顆粒間之作用 13 2.4 藥物傳輸載體製備 15 2.5 聚乳酸-甘醇酸 15 2.6 聚縮酮 16 2.7 厚朴酚 18 2.8 伊曲康唑 20 第三章 研究設計與材料方法 22 3.1 研究設計 22 3.1.1 實驗設計 22 3.1.1 實驗架構 24 3.2 實驗藥品、試劑與儀器設備 25 3.2.1 合成製備之實驗藥品試劑 25 3.2.2 細胞培養用之藥品試劑 26 3.2.3 實驗分析儀器設備 27 3.3 聚縮酮共聚物合成 28 3.3.1 PK3共聚物合成 28 3.4 微米顆粒載體製備 29 3.4.1 空白微米顆粒製備 29 3.4.2 包覆藥物微米顆粒製備 29 3.4.3 包覆螢光染劑DiI微米顆粒製備 30 3.5 顆粒載體特性分析 31 3.5.1 粒徑分析與表面形態觀察 31 3.5.2 顆粒藥物包覆率分析 31 3.5.3 顆粒體外釋放試驗 34 3.6 細胞培養 37 3.6.1 細胞培養條件及培養液配製 37 3.6.2 細胞凍存與活化 37 3.6.3 細胞培養基更換 38 3.6.4 細胞繼代 38 3.6.5 細胞計數 38 3.6.6 細胞毒性MTT分析 39 3.6.7 螢光顆粒觀察細胞吞噬顆粒情形 40 3.6.8 包藥顆粒抑制細胞一氧化氮產物生成分析 40 4. 統計學分析 41 第四章 結果 42 4.1 藥物顆粒載體性質分析 42 4.1.1 微米顆粒形態與粒徑分析 42 4.1.2 顆粒包覆效率評估 47 4.1.3 材料電性分析 48 4.1.4 包覆藥物之顆粒體外釋放效率評估 49 4.1.5 藥物與顆粒之懸浮性評估 51 4.2 細胞實驗 53 4.2.1 細胞形態觀察 54 4.2.2 細胞吞噬情形觀察 58 4.2.3 細胞毒性分析 61 4.2.4 抑制細胞一氧化氮產物生成之分析 65 第五章 討論 68 5.1 藥物顆粒載體分析 68 5.2 細胞實驗評估 70 第六章 結論 72 參考文獻 73

1. Pan, X., et al., Neuroprotective effect of combined therapy with hyperbaric oxygen and madopar on 6-hydroxydopamine-induced Parkinson's disease in rats. Neurosci Lett, 2015. 600: p. 220-225.
2. Wang, K., et al., Specific aptamer-conjugated mesoporous silica-carbon nanoparticles for HER2-targeted chemo-photothermal combined therapy. Acta Biomater, 2015. 16: p. 196-205.
3. Naranjo, T.W., et al., Combined itraconazole-pentoxifylline treatment promptly reduces lung fibrosis induced by chronic pulmonary paracoccidioidomycosis in mice. Pulm Pharmacol Ther, 2011. 24(1): p. 81-91.
4. Argenta, J.S., et al., In vitro and in vivo susceptibility of two-drug and three-drug combinations of terbinafine, itraconazole, caspofungin, ibuprofen and fluvastatin against Pythium insidiosum. Vet Microbiol, 2012. 157(1-2): p. 137-42.
5. Heinecke, J.W., Tyrosyl radical production by myeloperoxidase: a phagocyte pathway for lipid peroxidation and dityrosine cross-linking of proteins. Toxicology, 2002. 177(1): p. 11-22.
6. Stigliani, M., et al., Non-steroidal anti-inflammatory drug for pulmonary administration: design and investigation of ketoprofen lysinate fine dry powders. Int J Pharm, 2013. 448(1): p. 198-204.
7. Deacon, J., et al., Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: formulation, characterisation and functionalisation with dornase alfa (DNase). J Control Release, 2015. 198: p. 55-61.
8. Tsushima, K., et al., Acute lung injury review. Intern Med, 2009. 48(9): p. 621-30.
9. 行政院衛生福利部, 衛福部統計資料. 2013.
10. Fu, P.K., et al., Anti-Inflammatory and Anticoagulative Effects of Paeonol on LPS-Induced Acute Lung Injury in Rats. Evidence-Based Complementary and Alternative Medicine, 2012.
11. Ashbaugh, D.G., et al., Acute respiratory distress in adults. Lancet, 1967. 2(7511): p. 319-23.
12. Matthay, M.A., Conference summary: acute lung injury. Chest, 1999. 116(1 Suppl): p. 119S-126S.
13. Nieuwenhuizen, L., et al., A review of pulmonary coagulopathy in acute lung injury, acute respiratory distress syndrome and pneumonia. Eur J Haematol, 2009. 82(6): p. 413-25.
14. <Acute Lung Injury- Epidemiology, Pathogenesis, and Treatment.pdf>.
15. Choi, J.H., et al., Costunolide triggers apoptosis in human leukemia U937 cells by depleting intracellular thiols. Jpn J Cancer Res, 2002. 93(12): p. 1327-33.
16. Kang, J.S., et al., Antiinflammatory activity of methanol extract isolated from stem bark of Magnolia kobus. Phytother Res, 2008. 22(7): p. 883-8.
17. Kong, C.W., et al., Magnolol attenuates peroxidative damage and improves survival of rats with sepsis. Shock, 2000. 13(1): p. 24-8.
18. Lee, Y.J., et al., Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther, 2011. 130(2): p. 157-76.
19. Gou, M.L., et al., Preparation and characterization of honokiol nanoparticles. J Mater Sci Mater Med, 2008. 19(7): p. 2605-8.
20. 周俊良, 以大鼠急性肺損傷模式評估包覆厚朴酚微奈米顆粒之抗發炎能力. 國立臺灣科技大學碩士論文, 2014.
21. 黃信蓁, 開發適合肺部遞送之厚朴酚微奈米顆粒. 國立臺灣科技大學碩士論文, 2013.
22. 劉律君, 包覆厚朴酚之聚縮酮微米顆粒的製備與其在生醫之應用. 國立臺灣科技大學碩士論文, 2012.
23. 周啟君, 製備與評估適合作為抗菌組織調理材之聚甲基丙烯酸乙酯之微米顆粒. 國立臺灣科技大學碩士論文, 2013.
24. 羅濟生, 製備與評估具藥物釋放功能之牙科組織調理材. 國立臺灣科技大學碩士論文, 2012.
25. Zhang, K., et al., Increased dissolution and oral absorption of itraconazole/Soluplus extrudate compared with itraconazole nanosuspension. Eur J Pharm Biopharm, 2013. 85(3 Pt B): p. 1285-92.
26. Wark, P.A.B., et al., Anti-inflammatory effect of itraconazole in stable allergic bronchopulmonary aspergillosis: A randomized controlled trial. Journal of Allergy and Clinical Immunology, 2003. 111(5): p. 952-957.
27. Fiore, V.F., et al., Polyketal microparticles for therapeutic delivery to the lung. Biomaterials, 2010. 31(5): p. 810-7.
28. Patton, J.S. and P.R. Byron, Inhaling medicines: delivering drugs to the body through the lungs. Nature Reviews Drug Discovery, 2007. 6(1): p. 67-74.
29. Gouni-Berthold, I. and H.K. Berthold, Mipomersen and lomitapide: Two new drugs for the treatment of homozygous familial hypercholesterolemia. Atheroscler Suppl, 2015. 18: p. 28-34.
30. Bigatello, L.M. and W.M. Zapol, New approaches to acute lung injury. Br J Anaesth, 1996. 77(1): p. 99-109.
31. Wheeler, A.P. and G.R. Bernard, Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet, 2007. 369(9572): p. 1553-64.
32. Ware, L.B. and M.A. Matthay, The acute respiratory distress syndrome. N Engl J Med, 2000. 342(18): p. 1334-49.
33. Sou, T., et al., New developments in dry powder pulmonary vaccine delivery. Trends Biotechnol, 2011.
34. Wright, S.D., et al., CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 1990. 249(4975): p. 1431-3.
35. Michael A Matthay, G.A.Z., Acute Lung Injury and the Acute Respiratory
Distress Syndrome. AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2005. VOL 33.
36. Anzueto, A., et al., Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. Exosurf Acute Respiratory Distress Syndrome Sepsis Study Group. N Engl J Med, 1996. 334(22): p. 1417-21.
37. Allison, A.C., et al., Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2001. 25(7): p. 1341-1357.
38. Cepkova, M. and M.A. Matthay, Pharmacotherapy of acute lung injury and the acute respiratory distress syndrome. J Intensive Care Med, 2006. 21(3): p. 119-43.
39. McIntyre, R.C., Jr., et al., Thirty years of clinical trials in acute respiratory distress syndrome. Crit Care Med, 2000. 28(9): p. 3314-31.
40. Thomassen, M.J., et al., Surfactant downregulates synthesis of DNA and inflammatory mediators in normal human lung fibroblasts. Am J Physiol, 1996. 270(1 Pt 1): p. L159-63.
41. Lundin, S., et al., Response to nitric oxide inhalation in early acute lung injury. Intensive Care Med, 1996. 22(8): p. 728-34.
42. Meyer, J., et al., Inhaled prostaglandin E1 for treatment of acute lung injury in severe multiple organ failure. Anesth Analg, 1998. 86(4): p. 753-8.
43. Kshirsagar, N., Drug delivery systems. Indian Journal of Pharmacology, 2000. 32(4): p. S54-S61.
44. Rajera, R., et al., Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull, 2011. 34(7): p. 945-53.
45. Freiberg, S. and X.X. Zhu, Polymer microspheres for controlled drug release. Int J Pharm, 2004. 282(1-2): p. 1-18.
46. Lu, Y. and S.C. Chen, Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Deliv Rev, 2004. 56(11): p. 1621-33.
47. Chow, C.K., D.W. Matear, and H.P. Lawrence, Efficacy of antifungal agents in tissue conditioners in treating candidiasis. Gerodontology, 1999. 16(2): p. 110-8.
48. Mishra A, Ramteke S. Formulation and Evaluation of Mucoadhesive Buccal Film of Flurbiprofen. IntJ Pharm Tech Res, 2011. 3: p. 1825-1830.
49. Soppimath, K.S., et al., Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 2001. 70(1–2): p. 1-20.
50. Kumari, A., S.K. Yadav, and S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces, 2010. 75(1): p. 1-18.
51. Winzenburg, G., et al., Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Adv Drug Deliv Rev, 2004. 56(10): p. 1453-1466.
52. Edwards, D.A. and C. Dunbar, Bioengineering of therapeutic aerosols. Annu Rev Biomed Eng, 2002. 4: p. 93-107.
53. Musante, C.J., et al., Factors affecting the deposition of inhaled porous drug particles. J Pharm Sci, 2002. 91(7): p. 1590-600.
54. Patton, J.S. and P.R. Byron, Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov, 2007. 6(1): p. 67-74.
55. Sung, J.C., B.L. Pulliam, and D.A. Edwards, Nanoparticles for drug delivery to the lungs. Trends Biotechnol, 2007. 25(12): p. 563-70.
56. Rogueda, P.G. and D. Traini, The nanoscale in pulmonary delivery. Part 2: formulation platforms. Expert Opin Drug Deliv, 2007. 4(6): p. 607-20.
57. Sharma, G., et al., Polymer particle shape independently influences binding and internalization by macrophages. Journal of Controlled Release, 2010. 147(3): p. 408-412.
58. Gerard J. Tortora , Berdell R. Funke , and C.L. Case, Microbiology An Introduction 2003: Benjamin Cummings.
59. Vanderhoff, J.W., M.S. El-Aasser, and J. Ugelstad, Polymer emulsification process. 1979, Google Patents.
60. Takashima, Y., et al., Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres. Int J Pharm, 2007. 343(1-2): p. 262-9.
61. Yang, Y.T., et al., Spray-dried microparticles containing polymeric micelles encapsulating hematoporphyrin. AAPS J, 2010. 12(2): p. 138-46.
62. Fessi, H., et al., Nanocapsule formation by interfacial polymer deposition following solvent displacement. International Journal of Pharmaceutics, 1989. 55(1): p. R1-R4.
63. Loscertales, I.G., et al., Micro/nano encapsulation via electrified coaxial liquid jets. Science, 2002. 295(5560): p. 1695-8.
64. Almeria, B., et al., Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. J Colloid Interface Sci, 2010. 343(1): p. 125-33.
65. Rao, J.P. and K.E. Geckeler, Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 2011. 36(7): p. 887-913.
66. Lemoine, D. and V. Preat, Polymeric nanoparticles as delivery system for influenza virus glycoproteins. Journal of Controlled Release, 1998. 54(1): p. 15-27.
67. Makadia, H.K. and S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 2011. 3(3): p. 1377-1397.
68. Commandeur, S., H.M. van Beusekom, and W.J. van der Giessen, Polymers, drug release, and drug-eluting stents. J Interv Cardiol, 2006. 19(6): p. 500-6.
69. Danhier, F., et al., PLGA-based nanoparticles: an overview of biomedical applications. J Control Release, 2012. 161(2): p. 505-22.
70. Yang, S.C., et al., Polyketal copolymers: a new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjug Chem, 2008. 19(6): p. 1164-9.
71. Lee, S., et al., Solid polymeric microparticles enhance the delivery of siRNA to macrophages in vivo. Nucleic Acids Res, 2009. 37(22): p. e145.
72. Sy, J.C., et al., Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nat Mater, 2008. 7(11): p. 863-8.
73. Lee, S., et al., Polyketal microparticles: a new delivery vehicle for superoxide dismutase. Bioconjug Chem, 2007. 18(1): p. 4-7.
74. Wang, J.P., et al., Anti-inflammatory and analgesic effects of magnolol. Naunyn Schmiedebergs Arch Pharmacol, 1992. 346(6): p. 707-12.
75. Homma, M., et al., Inhibitory effects of lignans and flavonoids in saiboku-to, a herbal medicine for bronchial asthma, on the release of leukotrienes from human polymorphonuclear leukocytes. Planta Med, 2000. 66(1): p. 88-91.
76. Hamasaki, Y., et al., Magnolol inhibits leukotriene synthesis in rat basophilic leukemia-2H3 cells. Planta Med, 1999. 65(3): p. 222-6.
77. Han, S.J., et al., Magnolol and honokiol: inhibitors against mouse passive cutaneous anaphylaxis reaction and scratching behaviors. Biol Pharm Bull, 2007. 30(11): p. 2201-3.
78. Son, H.J., et al., Inhibitors of nitric oxide synthesis and TNF-alpha expression from Magnolia obovata in activated macrophages. Planta Med, 2000. 66(5): p. 469-71.
79. Tanaka, K., et al., Magnolia ovovata extract and its active component magnolol prevent skin photoaging via inhibition of nuclear factor kappaB. Eur J Pharmacol, 2007. 565(1-3): p. 212-9.
80. Vermitsky, J.P. and T.D. Edlind, Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob Agents Chemother, 2004. 48(10): p. 3773-81.
81. Kelly, S.L., et al., Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett, 1997. 400(1): p. 80-2.
82. White, T.C., K.A. Marr, and R.A. Bowden, Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev, 1998. 11(2): p. 382-402.
83. Verdon, C.P., B.A. Burton, and R.L. Prior, Sample pretreatment with nitrate reductase and glucose-6-phosphate dehydrogenase quantitatively reduces nitrate while avoiding interference by NADP+ when the Griess reaction is used to assay for nitrite. Anal Biochem, 1995. 224(2): p. 502-8.
84. Fu, X., Q. Ping, and Y. Gao, Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres. J Microencapsul, 2005. 22(7): p. 705-14.

QR CODE