簡易檢索 / 詳目顯示

研究生: Alvin Kwek
Alvin Kwek
論文名稱: Computer Vision-Based Post-Earthquake Inspections on Building Safety Assessment
Computer Vision-Based Post-Earthquake Inspections on Building Safety Assessment
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 楊亦東
I-Tung Yang
吳育偉
Yu-Wei Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 78
外文關鍵詞: SHM, ESRGAN, DeblurGANv2
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Safety assessment in structural health monitoring is one of the important factors for buildings. Structural health monitoring for building inspection is a necessity to provide faster danger responses and reduce threats. However, building infrastructures were exposed to natural disaster and lifetime. For the safety assessment during disaster, the image that were taken by the expert urgently from the site does not always produce a good quality image. Therefore, the Hybrid-GAN which comprise of ESRGAN and DeblurGANv2 were used as the image repairing method that generating better images. Meanwhile, Deep Learning techniques of Convolutional Neural Network (CNN) usage has significantly increase in the modern days especially computer vision-based approach for safety assessment in semantic segmentation task. Moreover, this research proposed Transfer Learning U-Net (TF-Unet) Algorithm to detect and classify building components which are column and structural wall alongside with the damage level according to the Taiwan codes for building evaluation assessment. Furthermore, the pre-train model were used to predict three case studies to test the capability of TF-Unet in handling real word dataset.

ABSTRACT ............................................................................................................................... i ACKNOWLEDGEMENT ....................................................................................................... ii TABLE OF CONTENTS ....................................................................................................... iv LIST OF FIGURES ............................................................................................................... vii LIST OF TABLES ................................................................................................................... x CHAPTER 1: INTRODUCTION ...................................................................................... 1 1.1 Background ................................................................................................................. 1 1.2 Research Objective ...................................................................................................... 3 1.3 Research Scope and Assumptions ............................................................................... 3 1.4 Research Methodology ................................................................................................ 4 1.5 Research Outline ......................................................................................................... 5 CHAPTER 2: LITERATURE REVIEW .......................................................................... 6 2.1 Generative Adversarial Networks (GAN) ................................................................... 6 2.1.1 Image Resolution ................................................................................................. 7 2.1.2 Enhanced Super Resolution GAN (ESRGAN) .................................................... 8 2.1.3 Image Blurriness .................................................................................................. 9 2.1.4 DeblurGANv2 .................................................................................................... 11 2.2 Computer Vision ....................................................................................................... 14 2.3 U-Net Algorithm ....................................................................................................... 15 2.4 Previous Research on Building Evaluation System .................................................. 18 2.5 Taiwan Emergency and Evaluation of Dangerous Buildings after Disaster (2014) . 19 CHAPTER 3: METHODOLOGY ................................................................................... 23 3.1 Data Collection .......................................................................................................... 25 v 3.1.1 DEEDS Dataset .................................................................................................. 26 3.1.2 PEER Hub ImageNet (Φ-Net) Dataset .............................................................. 27 3.1.3 Purdue University Research Repository Dataset ............................................... 27 3.2 Data Preprocessing .................................................................................................... 28 3.2.1 Hybrid GAN Model ........................................................................................... 28 3.2.1.1 Super Resolution Phase .............................................................................. 28 3.2.1.2 Blur Detection Phase .................................................................................. 28 3.2.2 Image Labelling Annotation .............................................................................. 29 3.2.3 Data Splitting ..................................................................................................... 31 3.3 TF-Unet Initialization ................................................................................................ 31 3.3.1 Hyperparameter Configuration .......................................................................... 31 3.3.2 TF-Unet Model Training and Validation ........................................................... 33 3.3.3 TF-Unet Performance Evaluation ...................................................................... 34 3.4 Evaluation on Case Study ......................................................................................... 36 3.4.1 Inputting Structure Member for Safety Damage Assessment ............................ 36 3.4.2 Structural Damage Index Calculation Phase ...................................................... 36 CHAPTER 4: MODEL EVALUATION AND IMPLEMENTATION ........................ 41 4.1 Dataset Introduction .................................................................................................. 41 4.2 Hybrid GAN .............................................................................................................. 42 4.2.1 ESRGAN Image Enhancement .......................................................................... 42 4.2.2 DeblurGANv2 Image Enhancement .................................................................. 43 4.3 Training Validation & Testing Results ..................................................................... 43 4.3.1 Column Damage Recognition ............................................................................ 43 4.3.2 Structural Wall Damage Recognition ................................................................ 47 4.3.3 Case 1 Yonkang Elementary School.................................................................. 50 vi 4.3.4 Case 2 Farmers Supermarket Yujing ................................................................. 53 4.3.5 Case 3 Jun-gong Elementary School ................................................................. 56 CHAPTER 5: CONCLUSION AND RECOMMENDATION ...................................... 59 5.1 Conclusion ................................................................................................................. 59 5.2 Recommendation ....................................................................................................... 60 REFERENCES ....................................................................................................................... 61

Ahmed, A., Hai, T., & Mohammed, A. T. (2017). Review of Deep Convolution Neural Network in Image Classification.
Bolan, S., Shijian, L., & Chew, L. T. (2011). Blurred Image Region Detection and Classification.
Chen, C.-C. (2014). Research on Revision of Emergency Evaluation Technology and System for Dangerous Buildings after Earthquake . M. O. I. Construction and Planning Agency.
Cheng, M.-Y., & Kent, S. (2021). Image Quality Enhancement Using HybridGAN for Automated Railway Track Defects Recognition
Cheng, M.-Y., & Richard, J. C. (2021). Image-Based Preliminary Emergency Assessment and Evaluation of Damaged Buildings After Earthquake - A Taiwan Case Study National Taiwan University of Science and Technology].
Chungwook, S., Enrique, V., Jhon, P. S., Pedro, R., Aishwarya, Y. P., Lucas, L., & Santiago, P. (2016). 2016 Ecuador Earthquake. https://doi.org/10.7277/ZFK0-Q384
Chungwook, S., Lucas, L., T. C., C., & Pu-wen, W. (2018). 2017 Pohang Earthquake. https://doi.org/10.7277/04XV-FA16
Chungwook, S., Nick, S., Ayhan, I., Santiago, P., Mete, S., & Cheng, S. (2016). Database of low-rise reinforced concrete buildings with earthquake damage, . https://doi.org/10.7277/ACX0-DG18
Denton, E., Chintala, S., Szlam, A., & Fergus, R. (2015). Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks.
Gao, Y., & Mosalam, K. M. (2019). PEER Hub ImageNet (Φ-Net): A Large-Scale Multi-Attribute Benchmark Dataset of Structural Images. https://apps.peer.berkeley.edu/phi-net/
62
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., & Bengio, Y. (2014). Generative Adversarial Nets.
Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2021). A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. IEEE Transactions on Knowledge and Data Engineering, 1-1. https://doi.org/10.1109/tkde.2021.3130191
He, C., Li, S., Xiong, D., Fang, P., & Liao, M. (2020). Remote Sensing Image Semantic Segmentation Based on Edge Information Guidance. Remote Sensing, 12(9). https://doi.org/10.3390/rs12091501
Igor, A., Taras, B., Constantine, B., Victor, K., Nickolay, M., & Olga, M. (2002). Type of Blur and Blur Parameters Identification Using Neural Network and Its Application to Image Restoration.
Islam, M. A. (2020). Reduced Dataset Neural Network Model for Manuscript Character Recognition.
Jena, R., Pradhan, B., Beydoun, G., Al-Amri, A., & Sofyan, H. (2020). Seismic hazard and risk assessment: a review of state-of-the-art traditional and GIS models. Arabian Journal of Geosciences, 13(2). https://doi.org/10.1007/s12517-019-5012-x
Jonathan, L., Evan, S., & Trevor, D. (2015). Fully Convolutional Networks for Semantic Segmentation.
Judd, T., Durand, F., & Torralba, A. (2011). Fixations on low-resolution images. J Vis, 11(4), 1-20. https://doi.org/10.1167/11.4.14
Kim, P. (2017). MATLAB Deep Learning With Machine Learning, Neural Networks and Artificial Intelligence. https://doi.org/10.1007/978-1-4842-2845-6
Kostková, J., Flusser, J., Lébl, M., & Pedone, M. (2020). Handling Gaussian blur without deconvolution. Pattern Recognition, 103. https://doi.org/10.1016/j.patcog.2020.107264
63
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., & Matas, J. (2018). DeblurGAN Blind Motion Deblurring Using Conditional Adversarial Networks. Proceedings of the IEEE conference on computer vision and pattern recognition.
Kupyn, O., Martyniuk, T., Wu, J., & Wang, Z. (2019). Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 8878-8887).
Ledig, C., Lucas, T., Ferenc, H., Jose, C., Andrew, C., Alejandro, A., Andrew, A., Alykhan, T., Johannes, T., Zehan, W., & Wenzhe, S. (2017). Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.
Liang, G., & Yimin, Z. (2019). A Review Generative Adversarial Networks.
Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäinen, M. (2019). Deep Learning for Generic Object Detection: A Survey. International Journal of Computer Vision, 128(2), 261-318. https://doi.org/10.1007/s11263-019-01247-4
Lynch, J. P. (2006). A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. The Shock and Vibration Digest, 38(2), 91-128. https://doi.org/10.1177/0583102406061499
Maeda, M., Matsukawa, K., & Ito, Y. (2014). Revision of Guideline for Post-Earthquake Damage Evaluation of RC Buildings in Japan.
Mansuri, L. E., & Patel, D. A. (2021). Artificial intelligence-based automatic visual inspection system for built heritage. Smart and Sustainable Built Environment, ahead-of-print(ahead-of-print). https://doi.org/10.1108/sasbe-09-2020-0139
Nakano, Y., Maeda, M., Kuramoto, H., & Murakami, M. (2004). Guideline for Post-Earthquake Damage Evaluation and Rehabilitation of RC Buildings in Japan.
Narazaki, Y., Gomez, F., Hoskere, V., Smith, M. D., & Spencer, B. F. (2020). Efficient development of vision-based dense three-dimensional displacement measurement
64
algorithms using physics-based graphics models. Structural Health Monitoring, 20(4), 1841-1863. https://doi.org/10.1177/1475921720939522
Ng, A. (2021). Machine Learning Coursera MOOC Standford Online.
Ohleyer, S. (2018). Building Segmentation on Satellite Images.
Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. https://doi.org/10.1109/tkde.2009.191
Prateek, P. S., & Santiago, P. (2018). Oaxaca 80. https://doi.org/10.7277/A58B-QP33
Prateek, S., Santiago, P., Aishwarya, P., & Lucas, L. (2016). 2015 Nepal Earthquake Building Performance Database. https://doi.org/10.7277/Z82F-0728
Pujol, S., Irfanoglu, A., Jahanshahi, M., Laughery, L. A., Puranam, A., Cheng, L., Hesam, P., Lund, A., Wu, R., Hwang, S., Chiou, T., Chung, L., Wu, C., Shen, W., Li, Y., Weng, P., Hsiao, F., Tsai, T., Lam, W., Lin, C., & Li, C. (2017). Performance of Reinforced Concrete Buildings in the 2016 Taiwan (Meinong) Earthquake. https://doi.org/10.4231/R7M32SZ3
Purdue, U. (2018). Buildings Surveyed after the 2017 Mexico City Earthquakes. https://doi.org/10.7277/524S-8146
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net Convolutional Networks for Biomedical Image Segmentation.
Shi, J., Dang, J., Cui, M., Zuo, R., Shimizu, K., Tsunoda, A., & Suzuki, Y. (2021). Improvement of Damage Segmentation Based on Pixel-Level Data Balance Using VGG-Unet. Applied Sciences, 11(2). https://doi.org/10.3390/app11020518
Tae, H. K., & Kyoung, M. L. (2014). Segmentation-Free Dynamic Scene Deblurring.
Vishal, M., Lan, U., & Yaw, A. (2018). Automated Road Crack Detection Using Deep Convolutional Neural Networks.
65
Wada, K. (2016). labelme: Image Polygonal Annotation with Python. In https://github.com/wkentaro/labelme
Wenzhe, W., Bin, W., Sixiong, Y., & W, Z. (2018). Road Damage Detection and Classification with Faster R-CNN.
Xintao, W., Ke, Y., Shixiang, W., Jinjin, G., Yihao, L., Chao, D., Chen, C. L., Yu, Q., & Xiaoou, T. (2018). ESRGAN Enhanced Super-Resolution Generative Adversarial Networks.
Yakubovskiy, P. (2019). Segmentation Models. In https://github.com/qubvel/segmentation_models
Zhao, X., Yuan, Y., Song, M., Ding, Y., Lin, F., Liang, D., & Zhang, D. (2019). Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Extract Rice Lodging. Sensors (Basel), 19(18). https://doi.org/10.3390/s19183859
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109(1), 43-76. https://doi.org/10.1109/jproc.2020.3004555
Zinan, L., Ashish, K., Giulia, F., & Sewoong, O. (2018). PACGAN The Power of Two Samples in Generative Adversarial Networks Paper.

無法下載圖示 全文公開日期 2025/01/24 (校內網路)
全文公開日期 2027/01/24 (校外網路)
全文公開日期 2027/01/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE