簡易檢索 / 詳目顯示

研究生: 王鼎元
Ding-Yuan Wang
論文名稱: 能量法於結構耐震設計效益評估研究
Comparison of Energy Methods in Assessment of Seismic Performance of Structures
指導教授: 黃震興
Jenn-Shin Hwang
口試委員: 邱建國
Chien-Kuo Chiu
黃尹男
Yin-Nan Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 127
中文關鍵詞: 總輸入能量瞬時輸入能量地震能量水槽模型
外文關鍵詞: Total Input Energy, Momentary Energy, Input Energy, Seismic Sink Model
相關次數: 點閱:151下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

地震輸入能量等於結構產生的動能、應變能、阻尼耗散能量與系統遲滯能之合,此為能量法(Energy Method)之準則。以能量法來評估地震力對結構物之破壞程度,在結構耐震設計時有著不少的幫助。
總輸入能量與瞬時輸入能量以地震能量水槽模型表示,兩種能量法皆清楚描述地震能量作用在結構的過程與消散之方式,但瞬時輸入能量利用水龍頭調節能量輸入結構之時間,說明了總輸入能量未考慮到時間因素。利用瞬時輸入能量水槽模型,地震能量主要反應在應變能之部位,可看出與結構反應有很明顯之關係,說明瞬時輸入能量比起總輸入能量更能描述地震力對結構之影響。對於不同消能機制之結構,不管機制怎麼改變,地震能量水槽模型也能清楚的敘述該結構之消能機制。
總輸入能量與結構反應兩者出現極值之時間不一定相同,結構系統加裝阻尼器後之結構反應減小,但總輸入能量在系統加裝阻尼器後未必減少,有時反而增加,表示在地震破壞能量評估上,總輸入能量或許還有不足的地方。瞬時輸入能量考慮到時間之因素,結構反應出現極值之時間和結構系統加裝阻尼器後之結構反應,皆有相同的趨勢。
隔震結構受地震作用時因隔震墊提供了非常大消能的能力,整個總輸入能量歷時比起減震結構又更平穩,因此若想從總輸入能量歷時之起伏看出結構反應,隔震結構比起前面傳統結構與減震結構又更加困難。瞬時能量之觀點來探討地震力對結構破壞潛勢,對結構物是加分或減分將受地震本身內涵頻率範圍之影響甚大。位處於較軟弱地盤之結構受震時將有較小的瞬時輸入能量;反之,位處於較堅硬地盤之結構將因非結構牆之加入而產生較大的瞬時輸入能量,進而對結構產生較大的破壞潛勢。


There have been two energy methods in evaluating the damage potential of earthquake ground motions to structures. The absolute energy method in which the total input energy is equal to the sum of kinetic energy, damping energy, elastic strain energy and hysteretic energy is based on the accumulated amount of energy input to the structure at the end of the ground excitation. The other energy method is denoted as the momentary input energy which is conceptually similar to the “input power” to the structure. However, the significance of the momentary input energy is to evaluate the input energy during certain time period rather than an infinitesimal time period, which is counted from one half cycle of structural vibration, i.e. the time duration from the zero velocity response to the next zero velocity response of the cyclic history response of a structure subjected to a ground excitation. In the study, these two methods have been further characterized extending from the “water sink” model proposed by Prof. Popov of the University of California, Berkeley.
In this study, a few structures equipped with seismic passive control devices and tested using a shaking table has been evaluated using these two energy methods to identify the efficiency of the passive control systems in protecting the structures against earthquakes. Based on the study it is found that the momentary input energy method is more appropriate than the absolute input energy method in evaluating the efficiency of seismic protective system in enhancing the seismic resistance of structures against earthquake ground motions. In addition, the same sense remains regarding the evaluation of damage potential of earthquake ground motions to structures.

摘要 I Abstract III 致謝 V 目錄 VII 表索引 XI 圖索引 XIII 第一章 緒論 1 1.1 研究背景及目的 1 1.2 研究重點及內容 2 第二章 能量理論 5 2.1 單自由度結構系統運動方程式 5 2.2 總輸入能量方程式 5 2.3 瞬時輸入能量方程式 7 2.4 能量理論驗證與分析 9 2.4.1 SAP2000N對黏性阻尼器之模擬 9 2.4.2 地震資料 10 2.4.3 二維單自由度門型構架模擬 10 2.4.4 線性黏性阻尼器識別阻尼比之方式 11 2.4.5 SAP2000N數據分析與結果 13 第三章 地震能量水槽模型 15 3.1 地震能量水槽模型之介紹 15 3.1.1 總輸入能量之地震能量水槽模型 15 3.1.2 瞬時輸入能量之地震能量水槽模型 16 3.2 各種結構消散能量機制 18 3.2.1 傳統結構消能機制 18 3.2.2 減震結構消能機制 19 3.2.3 隔震結構消能機制 20 3.2.4 三種結構能量消散機制比較 20 3.3 小結 20 第四章 振動台實驗數據探討 21 4.1 前言 21 4.2 傳統結構 21 4.2.1 試驗簡介 21 4.2.2 試驗數據分析 22 4.2.2.1 80%El Centro地震 22 4.2.2.2 80%Captiola地震 23 4.2.2.3 40%New Hall地震 23 4.2.2.4 280%TCU017地震 24 4.2.2.5 180%TCU048地震 24 4.2.2.6 50%TCU068地震 25 4.2.3 試驗結果討論 25 4.3 減震結構 26 4.3.1 試驗簡介 26 4.3.2 試驗數據分析 27 4.3.2.1 80%El Centro地震 27 4.3.2.2 80%Captiola地震 28 4.3.2.3 40%New Hall地震 29 4.3.2.4 280%TCU017地震 29 4.3.2.5 180%TCU048地震 30 4.3.2.6 50%TCU068地震 31 4.3.3 試驗結果討論 32 4.4 隔震結構 32 4.4.1 試驗簡介 32 4.4.2 試驗數據分析 33 4.4.2.1 100%El Centro 地震 33 4.4.2.2 200%Taft 地震 33 4.4.2.3 100%Captiola地震 34 4.4.2.4 120%Corralitos地震 34 4.4.2.5 60%New Hail地震 34 4.4.2.6 50%Kobe地震 35 4.4.3 試驗結果討論 35 4.5 鋼筋混凝土結構 35 4.5.1 試驗簡介 35 4.5.2 試驗數據分析 37 4.5.2.1 100%TAP100地震(較軟地盤地震) 37 4.5.2.2 200%TCU017地震(長週期地震) 38 4.5.2.3 100%TCU078地震(堅實地盤地震) 40 4.5.3 試驗結果討論 41 4.6 非彈性試驗 43 4.6.1 試驗簡介 43 4.6.2 試驗數據分析 44 4.6.2.1 彈性範圍內 44 4.6.2.2 非彈性範圍 45 4.6.3 試驗結果討論 45 第五章 結論及建議 49 參考文獻 52

【1】 Housner, G. W.,(1956),“Limit Design of Structures to Resist Earthquake ”, Proceedings of the First World Conference on Earthquake Engineering, pp. 5-1 to 5-13, Berkeley, Califormia.
【2】 Akiyama H. Earthquake-Resistant Limit-State Design for Buildings [M], University of Tokyo Press, Japanese, (1985) .
【3】 Uang, Chia-Ming and Bertero, Vitelmo V.,“Use of Energy as a Design Criterion in Earthquake-Resistant Design,” Report No. UCB/EERC-88/18, University of California, Berkeley, (1988).
【4】 內政部營建署,“建築物耐震規範及解說”民國八十八年十二月。
【5】 黃慶東,「近斷層地震地動特性與震譜特性之探討」,結構工程,第十五卷,第二期,第91∼113頁,民國八十九年六月。
【6】 Hori, Norio Tomoya Iwasaki and Inoue, Norio, (2000) “Damaging Properties of Ground Motions and Response Behavior of Structures Based on Momentary Energy Response,” 12th World Conference on Earthquake Engineering, CD-ROM Paper No.0839, New Zealand.
【7】 Popov E.P., Yang T.S. and Grigorian C.E., (1993), “New Directions in Structural Seismic Design”, Earthquake Spectra, Vol. 9, No. 4, pp.845-875.
【8】 Farzad Naeim, (1994), “Implications of the 1994 Northridge Earthquake Ground Motions for the Seismic Design of Tall Buildings,” The Structural Design of Tall Buildings, Vol. 3, pp.247-267.
【9】 Seleemah, A. A. and Constantinou, M. C. “ Investigation of Seismic Response of Buildings with Linear and Nonlinear Fluid Viscous Dampers”, Technical Report NCEER-97-004, National Center for Earthquake Engineering Research, University at Buffalo, State University of New York, Buffalo, N.Y.. , (1997).
【10】 SAP2000 Analysis Reference Volume 1, (1996), “Computers and Structures”, Inc., Berkeley, California.
【11】 FEMA,(1997), NEHRP Guidelines and Commentary for the Seismic Rehabilitation of Buildings, Reports No.273, October, Washington
【12】 Fu, Yaomin and Kasai, Kazuhiko (1998), “Comparative Study of Frames Using Viscoelastic and Viscous Dampers,” Journal of Structural Engineering, ASCE, Vol.124, No. 5, pp513-522.
【13】 Whittaker, Andrew and Constantinou, M.C., (2000), “Fluid Viscous Dampers for Building Construction,” First International Symposium on Passive Control, pp 133-142, Tokyo Institute of Technology, Tokyo.
【14】 黃震興、黃尹男,「使用線性黏性阻尼器建築結構之耐震試驗與分析」, 國家地震工程研究中心報告 NCREE-01-022,2001。
【15】 黃震興、黃尹男、洪雅惠,「含非線性黏性阻尼器結構之減震試驗與分析」,國家地震工程研究中心報告 NCREE-02-020,2002。
【16】 Force Control Bearings for Bridges. Dynamic Isolation System, Inc., Berkeley, California,(1990).
【17】 Kelly, J.M.,(1994), “Dynamic and Failure characteristics of Bridgestone Isolation Bearing ”,: EERC Report No.91/04, Earthquake Engineering Research Center, University of California, Berkeley.
【18】 Friction Pendulum Seismic Isolation Bearings.,Earthquake Protection System, Inc., San Francisco, Califormia, ( 1993 ).
【19】 許丁友,「LRB隔震房屋結構之三軸向地震力試驗研究」,碩士論文,1999。
【20】 蔡俊祥,「使用黏性阻尼器於鋼筋混凝土結構之地震力試驗研究」,國家地震工程研究中心報告 NCREE-04-010,2004。
【21】 Constantinou, M.C., Tsopelas, P., and Hammel, W., (1997), Testing and Modeling of an Improved Damper Configuration for Stiff Structural Systems, Center for Industrial Effectiveness, State University of New York, Buffalo, NY.
【22】 李昭逸,「含黏性阻尼器減震結構之非彈性地震反應試驗與分析」,國家地震工程研究中心報告 NCREE-03-011,2003。

QR CODE