簡易檢索 / 詳目顯示

研究生: 陳紀瑋
Chi-Wei Chen
論文名稱: 雙酚A-甲基丙烯酸縮水甘油酯與甲基丙烯酸-三乙烯醇二甲基光固化樹脂之單體含量、照光時間與照光強度的效果
A Study on Effects of The Monomer Content, Photocuring Time and Visible-Light Intensity in Cured Resins of Bis-phenol A Diglycidyl Methacrylate and Triethylene Glycol Dimethacrylate
指導教授: 胡孝光
Shiaw-guang Hu
口試委員: 高震宇
Chen-yu Kao
楊正昌
Cheng-chang Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 74
中文關鍵詞: 雙酚A-甲基丙烯酸縮水甘油酯與甲基丙烯酸甲基丙烯酸-三乙烯醇二甲基交聯密度網路結構
外文關鍵詞: Bis-phenol A Diglycidyl Methacrylate, Triethylene Glycol Dimethacrylate, crosslink density, network structure
相關次數: 點閱:284下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以不同比例的進料Bis-phenol A Diglycidyl Methacrylate(BisGMA)(50~80 mol%)及Triethylene Glycol Dimethacrylate (TEGDMA) (20~50 mol%),使用Camphorquinone (CQ) 與 Diphenylphosphine oxide為光起始劑,以不同照光時間(2~6 mins)與不同照光強度(600~1800 mW/cm2),並以可見光固化聚合,討論BisGMA/TEGDMA進料比、照光時間及照光強度對雙鍵反應轉化率的影響,以及交聯密度與轉化率如何影響到膨潤交聯產物的水與高分子之交互作用,及影響乾交聯產物的動態機械性質。
藉由FTIR傅立葉紅外線光譜儀測高分子的轉化率得知,隨著BisGMA含量增加、照光時間增長或照光強度增強時,轉化率都會上升。而轉化率與照光強度有冪次關係,其指數為0.226~0.371之間。利用雙鍵轉化率與照光時間可計算出增長反應級數(n)與反應速率常數(k),n值與k值皆隨著BisGMA進料量增加或照光強度增強而降低。壓縮模數隨BisGMA進料量增加而上升,交聯密度會增加,且網路中物理纏結的密度(Ns)和網路中化學交聯的密度(Nc)都會增加,表示BisGMA進料量增加有助於物理性及化學性的交聯。而增加照光時間或照光強度時,亦會得到上述類似之結果。此外,利用交聯密度與高分子吸水率可計算得出水和高分子間交互作用參數(χ),隨著BisGMA含量增加、照光時間增長或照光強度增強時,χ值會上升,平衡含水率越低。固化體積收縮率隨BisGMA進料量增加或照光強度增強而下降,因為BisGMA有苯環結構,會降低其固化體積收縮率。但隨照光時間增長時,固化體積收縮率則上升。由動態機械分析發現,隨著BisGMA進料量增加、照光時間增長或照光強度增強時,儲存模數與玻璃轉移溫度(Tg)皆會增加。玻璃轉移溫度(Tg)隨著交聯密度增加而上升,為線性關係。而儲存模數與交聯密度各取自然對數後,儲存模數正比於交聯密度的1.918次方。
實驗結果得知當改變BisGMA/TEGDMA進料比、照光時間或照光強度,均會影響高分子的網路結構、雙鍵轉化率與交聯密度,進而影響到膨潤交聯產物的水與高分子之交互作用,及影響乾交聯產物的動態機械性質。


 Adhesives were prepared by using various mole ratios of bis-phenol A diglycidyl methacrylate(BisGMA)(50~80 mol%) and triethylene glycol dimethacrylate (TEGDMA) (20~50 mol%) in feed, with camphorquinone (CQ) and diphenylphosphine oxide as the photoinitiators. We use the different photocuring times (2~6 mins) and different light intensities (600~1800 mW/cm2) of visible light. We examine the effects of BisGMA/TEGDMA mole ratios in feed, photocuring times and light intensities on conversion of reaction, and how crosslink density and conversion of reaction affect the interactions between water and polymers in swollen resins and dynamic mechanical properties of dry resins.
According to FTIR analysis, as the contents of BisGMA increase, the photocuring times increase or the light intensity increases, the conversions of double bonds increase. There is a power raw relationship between the conversion and light intensity with an exponent equal to 0.226~0.371. The order of propagation reaction (n) and reaction rate constant (k) are calculated by the conversions of double bonds versus photocuring times. As the contents of BisGMA increase or the light intensity increases, both of the n values and k values decrease. Compressive modulus and crosslinking density increase with increasing the contents of BisGMA in feed. Both of the density of physical entanglement(Ns)and the density of chemical crosslinking in network(Nc) increase with increasing the contents of BisGMA in feed, showing that adding BisGMA is favorable for physical and chemical crosslinking. And increasing the photocuring times or the light intensities, leads to similar results to the above. In addition, the interaction parameters of water and polymers in adhesives (χ) were calculated by crosslinking densities and equilibrium water contents. As the contents of BisGMA increase, the photocuring times increase or the light intensity increases, the χ values increase and the equilibrium water contents decrease. Curing volume shrinkages decrease with increasing the contents of BisGMA in feed or increasing the light intensity because of BisGMA with benzene structure offering the less shrinkage than TEGDMA. But increasing the photocuring times, the curing volume shrinkages increase. According to DMA analysis, as the contents of BisGMA increase, the photocuring times increase or the light intensity increases, the storage modulus and the glass transition temperature (Tg) will increase. The glass transition temperature is increased by increasing crosslink density, there is a linear relationship between them. And there is a power raw relationship between the storage modulus and crosslink density with an exponent equal to 1.918.

Experimental results show that we vary BisGMA/TEGDMA ratios in feed, photocuring times or light intensities, that will influence the conversions of double bonds, network structure of polymer and crosslink density, thereby affecting the interactions between water and polymers in swollen resins, as well as affecting dynamic mechanical properties of dry resins.

一、前言…………………………………………………………………..1 二、實驗方法…………………………………………………………….8 2.1 BisGMA/TEGDMA高分子的製備 8 2.2 測定反應後產物中殘留溶劑量達到平衡的時間 9 2.3 雙鍵反應轉化率測試 9 2.4 平衡膨潤測定 9 2.5 壓縮變形率測試 10 2.6 固化體積收縮率測試 10 2.7 動態機械性質分析 11 三、結果與討論 12 3.1 測定反應後產物中殘留溶劑量達到平衡的時間 12 3.2 傅立葉轉換紅外線光譜(FTIR)分析 12 3.2.1 BisGMA進料量與照光時間對雙鍵轉化率之影響 13 3.2.2 照光強度對雙鍵轉化率的影響 14 3.3 雙鍵轉化率與照光時間及光固化動力學模型 15 3.4 平衡含水率分析 16 3.4.1 BisGMA/TEGDMA比例與照光時間對平衡含水率之影響 16 3.4.2 照光強度對平衡含水率的影響 17 3.5 材料之壓縮測試 17 3.5.1 壓縮模數測定 17 3.5.2 含水率與交聯密度及Flory-Huggins交互作用參數 19 3.5.3 膨潤交聯網絡結構對黏彈性質之影響分析 21 3.6 固化體積收縮率分析 23 3.6.1 BisGMA/TEGDMA比例與照光時間對固化體積收縮率之影響 23 3.6.2 照光強度對固化體積收縮率之影響 24 3.7 材料之動態機械性質分析 24 3.7.1 BisGMA/TEGDMA比例對動態機械性質之影響 24 3.7.2 照光時間對動態機械性質之影響 25 3.7.3 照光強度對動態機械性質之影響 26 3.7.4 動態機械性質與交聯密度的關係…………………………26 四、結論 28 五、參考文獻 30 附錄 A 環化反應示意圖.....................................................................72 附錄 B 考慮反應機構之光固化動力學.............................................73 附錄 C 水和高分子間交互作用參數(χ)與交聯密度的關係……74

1. T. Sugaya, M. Kawanami, H. Noguchi, H. Kato, and N. Masaka, Periodontal healing after bonding treatment of vertical root fracture, Dent. Traumatol., 17, 174-179 (2001).
2. D. W. Jones, Has dental amalgam been torpedoed and sunk, J. Dent. Res.,87(2),101-102 (2008).
3. H. Shintani, T. Inoue, M. Yamaki, Analysis of camphorquinone in visible light-cured composite resins, Dent. Mater, 1,124-126 (1985).
4. W. Geurtsen, Biocompatibility of resin-modified filling materials, Crit. Rev. Oral. Biol. Med. , 11(3) ,333-355 (2000).
5. K. Sunnegardh-Gronberg, J.W. van Dijken, U. Funegard, A. Lindberg, M. Nilsson, Selection of dental materials and longevity of replaced restorations in Public Dental Health clinics in northern Sweden, J. Dent., 37,673-678(2009).
6. A. Peutzfeldt, Resin composites in dentistry: the monomer systems, Eur. J. Oral. Sci. ,105, 97-116 (1997).
7. U.V. Lauppi, Radiation curing-an overview,. Radia. Phys. Chem., 35,30-35 (1990).
8. C. Decker, Photoinitiated crosslinking polymerization, Prog. Polym .Sci., 21, 593-650 (1996).
9. J. P. Fouassier, Photoinitiation, photopolymerization, and photocuring: fundamentals and application, Hanser, (1995).
10. F. Rueggeberg, W. Caughman, J. Curtis, Effect of light intensity and exposure duration on cure of resin composite, Oper. Dent., 19,26-32(1994).
11. N. Silikas, G. Eliades, D. Watts, Light intensity effects on resin-composite degree of conversion and shrinkage strain, Dent. Mater., 16,292-296(2000).
12. M. Ichihashi, M. Ueda, A. Budiyanto, T. Bito, M. Oka, M. Fukunaga, K. Tsuru, and T. Horikawa, UV-induced skin damage, Toxicology, 189, 21-39(2003).
13. S. E. Ullrich, Mechanisms underlying UV-induced immune suppression, Mutation Res, 571, 185-205(2005).
14. M. Buonocore, W. Wileman, and F. Brudevold, A report on a resin composition capable of bonding to human dentin surfaces, J. Dent. Res, 35, 846-851(1956).
15. H. H. Chandler, R. L. Bowen, and G. C. Paffenbarger , Physical properties of a radiopaque denture base material, J. Biomed. Mater. Res., 5, 335-357(1971).
16. L. C. Mendes , A. D. Tedesco , M. S. Miranda , M. R. Benzi ,and B. S. Chagas , Determination of degree of conversion as a function of depth of a photo-initiated dental restoration composite—III application to commercial Prodigy Condensablee , Polym. Testing .,24, 963-968 (2005).
17. L. Lovelh, S. Newman, C. Bowman, The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins, J. Dent. Res, 78,1469-1476 (1999).
18. I. Sideridou, D. S. Achilias, C. Spyroudi, and M. Karabela , Water sorption characteristics of light-cured dental resins and composites based on Bis-EMA/PCDMA ,Biomaterials,25,367-376 (2004).
19. C. S. Pfeifer, Z. R. Shelton, R. R. Braga, D. Windmoller, J. C. Machado, and J. W. Stansbury, Characterization of dimethacrylate polymeric networks: A study of the crosslinked structure formed by monomers used in dental composites, Eur. Polym. J., 47, 162-170 (2011).
20. D.R. Morgan, S. Kalachandra, H.K. Shobha, N. Gunduz, and E.O. Stejskal, Analysis of a dimethacrylate copolymer (Bis-GMA and TEGDMA) network by DSC and 13C solution and solid-state NMR spectroscopy , Biomaterials, 21, 1897-1903(2000).
21. J.B. Enns, J.K. Gillham, Effect of the extent of cure on the modulus, glass transition, water absorption, and density of an amine‐cured epoxy, J. Appl. Polym. Sci., 28,2831-2846(1983)
22. J. Park, Q. Ye, E. M. Topp, A. Misra, S. L. Kieweg, and P. Spencer, Effect of photoinitiator system and water content on dynamic mechanical properties of a light-cured bisGMA/HEMA dental resin, J. Biomed. Mater. Res., Part A, 1245-1251(2009).
23. J. Park, J. Eslick, Q. Ye, A. Misra, and P. Spencer ,The influence of chemical structure on the properties in methacrylate-based dentin adhesives , Dent. Mater., 27, 1086 -1093(2011).
24. Q. Ye, P. Spencer, Y. Wang, and A. Misra , Relationship of solvent to the photopolymerization process, properties, and structure in model dentin adhesives , J. Biomed. Mater. Res. A. , 80(2), 342-350 (2007).
25. C. I. Vallo, Flexural strength distribution of a PMMA-based bone cement, J. Biomed. Mater. Res., 63, 226-236 (2002).
26. S.H. Park, Comparison of degree of conversion for light-cured and additionally heat-cured composites ,J. Pro. Dent. ,76 ,613-618 (1996).
27. R.H. Halvorson, R.L. Erickson, and C.L. Davidson, Energy dependent polymerization of resin-based composite, Dent. Mater.,18,463 -469(2002).
28. A.D. Neves, J.A. Discacciati, R.L. Orefice, and M.I. Yoshida, Influence of the power density on the kinetics of photopolymerization and properties of dental composites, J. Biomed. Mater. Res.B: Appl. Biomater., 72,393-400 (2005).
29. I. Sideridou, V. Tserki, G. Papanastasiou, Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins, Biomaterials, 24,655-665 (2003)
30. S. J. Paul, M. Leach, F. A. Rueggeberg, and D. H. Pashley, Effects of water content on the physical properties of model dentine primer and bonding resins, J. Dent., 27, 209-214 (1999).
31. M. Atai, M. Nekoomanesh, S. Hashemi, S. Amani, Physical and mechanical properties of an experimental dental composite based on a new monomer, Dent. Mater., 20,663-668 (2004)
32. R.L. Bowen , Properties of a silica-reinforced polymer for dental restorations, J. Am. Dent. Assoc., 66,57-64 (1963).
33. I.E. Ruyter and H. Byszd , Composites for use in posterior teeth: Composition and conversion, J. Biomed. Mater. Res., 21, 11-23 (1987).
34. R. Frankenberger and F. R. Tay, Self-etch vs etch-and-rinse adhesives: effect of thermo-mechanical fatigue loading on marginal quality of bonded resin composite restorations, Dent. Mater., 21(5), 397 -412(2005).
35. B. V. Meerbeek, K. Van Landuyt, J. D. Munck, M. Hashimoto, M. Peumans, P. Lambrechts, Y. Yoshida, S. Inoue, and K. Suzuki, Technique-sensitivity of contemporary adhesives, Dent. Mater., 24(1), 1-13(2005).
36. L.G. Lovell, K.A. Berchtold, J.E. Elliott, H. Lu, C.N. Bowman, Understanding the kinetics and network formation of dimethacrylate dental resins, Polym. Adv. Techno., 12,335-345 (2001).
37. J.E. Elliott and C.N. Bowman, Kinetics of primary cyclization reaction in cross-linked polymers: An analytical and numerical approach to heterogeneity in network formation, Macromolecules, 32,8621-8628 (1999).
38. J.E. Elliott, J. Nie, and C.N. Bowman, The effect of primary cyclization of free radical polymerization kinetics: Experimental characterization, Polymer,44 , 327-332 (2003).
39. J. E. Elliott, L. G. Lovell, and C. N. Bowman, Primary cyclization in the polymerization of bis-GMA and TEGDMA: a modeling approach to understanding the cure of dental resins, Dent. Mater., 17(3), 221-229 (2001).
40. H. Sano, W.G. Mattews, and D.H. Pashley, Tensile properties of mineralized and demineralized human and bovine dentin, J. Dent. Res. ,73, 1205-1211(1994).
41. D.H. Shin, H.R. Rawls, Degree of conversion and color stability of the light curing resin with new photoinitiator systems, Dent. Mater., 25,1030-1038 (2009).
42. L.G. Lovell, S.M. Newman, M.M. Donaldson, C.N. Bowman, The effect of light intensity on double bond conversion and flexural strength of a model, unfilled dental resin, Dent. Mater., 19,458-465 (2003).
43. J.D. Cho, H.T. Ju, J.W. Hong, Photocuring kinetics of UV‐initiated free‐radical photopolymerizations with and without silica nanoparticles, J. Polym. Sci. Part A, Polym. Chem., 43,658-670 (2005).
44. M. Keenan, Autocatalytic cure kinetics from DSC measurements: zero initial cure rate, J.Appl. Polym. Sci., 33,1725-1734 (1987).
45. M. López‐Manchado, M. Arroyo, B. Herrero, J. Biagiotti, Vulcanization kinetics of natural rubber–organoclay nanocomposites, J. Appl. Polym. Sci., 89,1-15(2003).
46. Y .Zhang and J. Xu, Effect of immersion in various media on the sorption, solubility, elution of unreacted monomers, and flexural properties of two model dental composite compositions. J. Mater. Sci. Mater. Med.,19,2477-2483(2008).
47. U. Ortengren, H .Wellendorf, S. Karlsson, and I.E. Ruyter, Water sorption and solubility of dental composites and identification of monomers released in aqueous environment. J. Oral. Rehabil. ,28,1106-1115(2001).
48. J. Durner, P. Wellner, R. Hickel, F. Reichl, Synergistic interaction caused to human gingival fibroblasts from dental monomers, Dent. Mater., 28,818-823 (2012)
49. A. Peutzfeldt, Resin composites in dentistry: the monomer systems, Eur. J. Oral. Sci. ,105, 97-116 (1997).
50. K. Ulbrich, K. Dušek, M. Ilavský, and J. Kopeček, Preparation and properties of poly-(n-butylmethacrylamide) networks, Eur. Polym. J., 14, 45-49 (1978).
51. K. Ulbrich, M. Ilavský, K. Dušek, and J. Kopeček, Preparation and properties of poly-(n-ethylmethacrylamide) networks, Eur. Polym. J., 13, 579-585 (1977).
52. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, N. Y., Chapter 12, 13 (1953).
53. L. B. Peppas and N. A. Peppas, Structural analysis of charged polymeric networks, Polym. Bull., 20, 285(1988).
54. L. H. Sperling, Introduction to Physical Polymer Science, Wiley-Interscience, N. Y., 439 (1986).
55. R. C. Ball, M. Doi, S. F. Edwards, and M. Warner, Elasticity of entangled networks, Polymer, 22, 1010-1018 (1981).
56. R. G. Matthews, R. A. Duckett, I. M. Ward, and D. P. Jones, The biaxial drawing behaviour of poly(ethylene terephthalate), Polymer, 38, 4795 -4802(1997).
57. I. Sakurada, A. Nakajima, and H. Fujiwara, Elasticity of entangled networks, J. Appl. Polym. Sci., 35, 479 (1959).
58. P. Thirion and T. Weil, Assessment of the sliding link model of chain entanglement in polymer networks, Polymer, 25, 609-614 (1984).
59. M. G. Brereton and P. G. Klein, Analysis of the rubber elasticity of polyethylene networks based on the slip link model of S. F. Edwards et al., Polymer, 29, 970-974 (1988).
60. M. Podgórski, Structure–property relationship in new photo- cured dimethacrylate-based dental resins, Dent. Mater., 28, 398 -409(2012).
61. M. Dewaele, D. Truffier-Boutry, J. Devaux, G. Leloup, Volume contraction in photocured dental resins: the shrinkage-conversion relationship revisited, Dent. Mater., 22,359-365 (2006).
62. M.P. Patel, M. Braden and K.W.M. Davy, Polymerization shrinkage of methacrylate esters, Biomaterials,8,53-56(1987).
63. B. Venhoven, A. De Gee, C. Davidson, Polymerization contraction and conversion of light-curing BisGMA-based methacrylate resins, Biomaterials, 14,871-875(1993).
64. Paul C. Hiemenz, Timothy P. Lodge, Polymer Chemistry, Second Edition, 423-428, Taylor & Francis Group, LLC(2007).
65. H. Stutz, K. H. Illers, and J. Mertes, A generalized theory for the glass transition temperature of crosslinked and uncrosslinked polymers, J. Polym. Sci, Part B, Polym. Phys.,28, 1483-1498(1990).

無法下載圖示
全文公開日期 2025/07/29 (校外網路)
全文公開日期 2025/07/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE