簡易檢索 / 詳目顯示

研究生: 江婷
Ting Chiang
論文名稱: 基於樹莓派之光譜晶片檢測系統開發
Development of a Focusing Inspection System for the Spectrochip Module Based on Raspberry Pi
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 李敏凡
Ming-Fan Ricky Lee
沈志霖
Ji-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 59
中文關鍵詞: 微型光譜儀波長校正樹梅派
外文關鍵詞: Micro-spectrometer, Wavelength calibration, Raspberry Pi
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光譜學為二十世紀以來最重要的科學之一,站有舉足輕重的地位。在食品安全、生物醫藥、環境監測、天文學等領域中應用,運用光學原理可以無損地對物質的結構和組成進行定性、定量的分析。由於傳統的光譜儀體積大、價格昂貴,且較不利於在現場、實時、快速的應用需求,因此光譜儀的微型化已是大勢所趨。
    基於MEMS(微機電系統)技術製作出微型光譜核心晶片,其結構包含光學接收狹縫、凹面光柵、高反射率膜鏡面。此次實驗使用樹莓派及樹梅派鏡頭模組、微型光譜核心晶片、光學鏡頭以及本論文自行開發的光譜儀程式來實做一套光譜晶片檢測系統。
    樹莓派是一款基於Linux的單晶片低價電腦,本文中使用樹莓派(Raspberry Pi)做為開發板來替代一般電腦,並使用Python程式語言設計出一個光譜儀介面程式,包含光譜影像擷取、灰階化、影像的儲存等功能,藉由樹莓派操作此光譜儀介面程式來讀取的光譜數據,再利用存取匯出的數據作分析後可得到各波長之半高全寬、波長校正等資訊。
    透過此系統的軟體程式可以看到光譜儀之全幅影像,此功能可更方便且更準確的選取特定ROI區域取波段位置。並且程式具有儲存波長校正之功能,可以記錄不同光譜晶片的波長校正數值,因此當更換光譜晶片後可不需重複計算波長校正。


    Spectroscopy is one of the most important sciences in 21th century. In multiple domains such as food safety, life sciences, environmental analysis and astronomy, applying spectral analysis enables a qualitative and quantitative, nondestructive analysis of material structures and components. Traditional spectrophotometers tend to be bulky and expensive. The price also out of the reach of most users and do not lend themselves to real-time applications. As such, the miniaturization of spectrophotometers is trending.
    This thesis presents a system using Micro Electro Mechanical Systems (MEMS) technology to produce a micro-spectral chip. Its structure consists of entrance slit, concave grating, high-reflection facet coating mirror. In our experiment, we developed software and created micro spectrum detection system consisting of micro-spectrometer, Raspberry Pi, Non-Telecentric Lens and Raspberry Pi camera module.
    Raspberry Pi is a Linux-based single-chip low-cost computer. Raspberry Pi is a Linux-based single-chip low-cost computer. In this experiment, Raspberry Pi is used as a development board to replace the larger and more costly computer. We also developed a spectrometer interface software, including spectral image capture. The software is using the Python programming language. The spectral image capture includes functions such as fetching, gray scale, image storage, etc. The spectrometer interface allows the program to read the spectral data from the Raspberry Pi, and provide the end user with exported data for analysis. End users can get the full width at half maximum of each wavelength, wavelength correction, and other information.
    In our system, we can observe the full-frame image of micro-spectrometer, this feature enables us to get the ROI-region of certain area of spectrum more accurately and conveniently. Aside from this, we save the calibration information of different micro-spectrometer in our system so we can save the calculation when we switch the micro-spectrometer.

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 序論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 研究流程 2 1.4 本文架構 3 第二章 相關原理與文獻探討 4 2.1 光譜儀工作原理與基本組成 4 2.2 光譜理論 7 2.3 波長校正 8 2.4 半高全寬 10 2.5 光譜解析度 11 2.6 回歸分析 12 第三章 實驗系統設計及開發平台介紹 15 3.1 樹莓派 15 3.2 樹莓派作業系統 17 3.3 樹莓派相機模組 17 3.4 微型光譜儀 19 3.5 光學系統 20 3.6 實驗平台架構設計 23 3.7 系統軟體架構 29 第四章 系統功能實現與研究方法 32 4.1 實驗設計流程 32 4.2 光譜波長校正 33 4.2.1 定波長雷射光源實際像素位置 35 4.2.2 利用回歸分析找出波長校正係數 38 4.2.3 校正計算 42 4.3 即時影像光譜解析度轉換 42 第五章 結論與未來研究方向 45 5.1 結論 45 5.2 未來研究方向 46 參考文獻 47

    [1] 廖信凱,「以茄紅素近紅外光光譜分析番茄之成熟度」,碩士論文,國立臺灣大學,2009。
    [2] 陳杰歆,「利用近紅外線光譜儀快速偵測落花生黃麴毒素含量」,碩士論文,國立台灣大學,2018。
    [3] 邱韋懷,「晶片型光譜儀波長校正程序開發及尿蛋白濃度測量之應用」,碩士論文,國立台灣科技大學,2018。
    [4] 李思慧,「以近紅外光光譜儀探討憂鬱症患者於認知任務及心理壓力下之大腦皮質活化情況」,碩士論文,國立陽明大學,2017。
    [5] 林玧澈,「利用光纖光譜儀檢測水中餘氯含量之研究」,碩士論文,國立屏東科技大學,2018。
    [6] 盧瀅喬,「以微型光譜儀判讀空氣品質污染物」,碩士論文,東海大學,2015。
    [7] 經濟部智慧財產局,「光譜儀、光譜儀的波導片的製造方法及其結構」,網頁, https://www.tipo.gov.tw/tw/cp-730-707856-d1a35-1.html.,存取日期:2020年6月18日。
    [8] 劉明,「整合類神經網路與移動平均法之光譜儀訊號處理研究」,碩士論文,國立臺灣科技大學,2012。
    [9] 陳建安,「基於以白光LED之葡萄糖試紙反射光譜與濃度關係之研究」,碩士論文,國立臺灣科技大學,2012。
    [10] 劉昭廷,「波段300-1000 nm光譜儀校正程序之開發」,碩士論文,國立臺灣科技大學, 2016。
    [11] Ching-Hui Tseng, Joseph F. Ford, Charles K. Mann, and Thomas J. Vickers, "Wavelength calibration of a multichannel spectrometer," Applied spectroscopy, vol. 47, no. 11, pp. 1808-1813, 1993.
    [12] 徐郁茹,「可見光至近紅外波段微型高光譜影像儀之設計與成像分析」,碩士論文,國立臺灣科技大學,2018。
    [13] K. Li, G. Y. Li, F. Xiao, F. Lu, Z. H. Wang and A. S. Xu, “Unidirectionally Optical Coupling from Free Space into Silicon Waveguide With Wide Flat-top Angular Efficiency,” Optics Express, vol. 20, no. 17, pp. 18545-18554, 2012.
    [14] G. E. Forsythe, Computer methods for mathematical computations. Prentice-Hall series in automatic computation, 1977, pp. 183-187.
    [15] Raspberry Pi Foundation, “Raspberry Pi 4 Model B specifications,” Accessed on: Jun. 18, 2020. [Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/.
    [16] Raspberry Pi Foundation, “Camera Module,” Accessed on: Jun. 18, 2020. [Online]. Available: https://www.raspberrypi.org/documentation/hardware/camera/.

    [17] H. Baltes, O. Brand, G. K. Fedder, C. Hierold, J. G. Korvink, and O. Tabata, Enabling Technology for MEMS and Nanodevices: Advanced Micro and Nano systems. John Wiley & Sons, 2013, pp. 2-10.
    [18] Edmund Optics Inc., “0.5X - 1.0X VariMagTL™ Non-Telecentric Lens,” Accessed on: Jun.18, 2020. [Online]. Available: https://www.edmundoptics.com/p/05x---10x-varimagtltrade-non-telecentric-lens/29919/.
    [19] Wikipedia, “C mount,” Jun. 19, 2020. Accessed on: Jun. 21, 2020. [Online]. Available: https://en.wikipedia.org/wiki/C_mount.

    無法下載圖示 全文公開日期 2025/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE