簡易檢索 / 詳目顯示

研究生: 李奇翃
Chi-hung Li
論文名稱: 生醫分子在微流道中的吸附現象
Biomolecular Adsorption in the Microchannel
指導教授: 陳品銓
Pin-chuan Chen
口試委員: 郭俞麟
Yu-lin Kuo
謝宏麟
Hung-lin Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 162
中文關鍵詞: 微流道蛋白質吸附數值模擬
外文關鍵詞: Microfluidics, Protein adsorption, Numerical Simulation
相關次數: 點閱:453下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在生醫晶片中,蛋白質吸附(Protein Adsorption)的現象是影響疾病檢測(Diseases Diagnosis)的重要考量,因為蛋白質吸附牽涉到反應分子的效能。本研究數值模擬了解不同入口速度、入口方式、長度及截面積之微流道(Microfluidic Channel)下,計算有多少生醫分子經過微流道,觸碰到壁面而被吸附,藉此了解流道設計與蛋白質吸附之關係。
利用微铣削機(Micro Milling machine)加工PMMA基材製造微流道模具,再利用PDMS翻印出微流道形狀,使用氬氣常壓電漿改質PDMS微流道表面最後與玻璃作黏合完成微流道晶片製作。
為了驗證模擬之結果,利用多次實驗來討論生醫分子的吸附性。實驗中之生醫分子為牛血清蛋白(BSA),利用Nanoorange螢光標示物標記牛血清蛋白。在實驗中將螢光檢體流經微流道晶片,使用共軛焦顯微鏡(Confocal)與螢光顯微鏡來觀察量測蛋白在微流道的吸附情形,並拍攝影像進行定量分析。模擬的結果了解蛋白質吸附和微流道的設計有相當之關係,但礙於多次實驗的不穩定性,無法直接驗證模擬之結果。


The protein adsorption is a critical factor in influencing the performance of a biochip which is used for disease detection. In this study, numerical simulation was used to estimate the protein adsorption rate in terms of the flowing velocity, design of the inlet, the length of the microchannel.
To validate the simulation results, the microfluidic devise was fabricated with a micromilling machine and the PDMS casting technique. Then the microchannel was sealed with another piece of glass with the surface plasma treatment and used for experiments.
Multiple experiments were conducted either with a confocal microscope or a fluorescence microscope, but the results were not steady enough to compare or even conclude with the simulation result. Therefore modification of the experiments will be made to improve the quality of the experiments, then validate the simulation results.

摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 X 表目錄 XV 符號表 XVII 第一章 導論 1 1.1 研究背景 1 1.2 蛋白質吸附文獻回顧 4 1.3 研究目的 12 1.4 研究方法 13 第二章 吸附現象模擬與討論 15 2.1 統御方程式與邊界條件 17 2.1.1 統御方程式 17 2.1.2 模擬設定 19 2.1.3 網格測試 23 2.2 不同的截面積對吸附的影響 25 2.3 不同的流道長度對吸附的影響 29 2.4 不同的入口速度對吸附的影響 33 2.5 不同的入口尺寸與外型對吸附的影響 36 2.6 模擬分析綜合討論 43 第三章 微流道晶片的設計與製程 47 3.1 微铣削 47 3.1.1 介紹 47 3.1.2 操作與使用方式 49 3.2 微流道晶片製作 52 3.2.1 模具設計與製作 52 3.2.2 聚二甲基矽氧烷高分子微流道晶片 63 3.3 大氣電漿黏合 65 3.3.1 黏合原理 65 3.3.2 晶片黏合 68 第四章 實驗設備與殘留量測方法 71 4.1 實驗設備 71 4.1.1 製程設備 71 4.1.2 量測設備 76 4.1.3 實驗設備 80 4.2 殘留量測方法 82 4.2.1 螢光劑配製與結合 82 4.2.2 殘留量測實驗設計 84 4.2.3 影像處理 97 第五章 實驗結果與討論 102 5.1 螢光濃度與強度關係量測 102 5.2 流道截面螢光量測 105 5.3 玻片上定量體積殘留量測 108 5.4 檢測容器殘留量測 114 5.5 實驗綜合討論 125 第六章 結論與未來展望 128 6.1 結論 128 6.2 未來展望 130 參考文獻 132 附錄A U model with inlet W0.5 粒子入口流線圖 136 附錄B U model with inlet W0.3 粒子入口流線圖 137 附錄C U model with inlet W0.1 粒子入口流線圖 138

[1] 李國賓. (2004). 自動化生物檢測晶片之研發. Available:http://ir.lib.ncku.edu.tw/handle/987654321/135955
[2] 傅筱瑩. (2001). 生物晶片簡介. Available:http://www.23xx.com.tw/reports/%B1d%A9M/010516-indust01.htm
[3] Y. Huang, E. Mather, J. Bell, and M. Madou, "MEMS-based sample preparation for molecular diagnostics," Analytical and Bioanalytical Chemistry, vol. 372, pp. 49-65, 2002.
[4] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373, 2006.
[5] I. Erill, S. Campoy, N. Erill, J. Barbe, and J. Aguilo, "Biochemical analysis and optimization of inhibition and adsorption phenomena in glass–silicon PCR-chips," Sensors and Actuators B: Chemical, vol. 96, pp. 685-692, 2003.
[6] M. A. Shoffner, J. Cheng, G. E. Hvichia, L. J. Kricka, and P. Wilding, "Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR," Nucleic Acids Research, vol. 24, pp. 375-379, 1996.
[7] T. B. Taylor, E. S. Winn-Deen, E. Picozza, T. M. Woudenberg, and M. Albin, "Optimization of the performance of the polymerase chain reaction in silicon-based microstructures," Nucleic acids research, vol. 25, pp. 3164-3168, 1997.
[8] M. Krishnan, D. T. Burke, and M. A. Burns, "Polymerase chain reaction in high surface-to-volume ratio SiO2 microstructures," Analytical chemistry, vol. 76, pp. 6588-6593, 2004.
[9] W. Wang, H. B. Wang, Z. X. Li, and Z. Y. Guo, "Silicon inhibition effects on the polymerase chain reaction: A real‐time detection approach," Journal of Biomedical Materials Research Part A, vol. 77, pp. 28-34, 2006.
[10] W. R. Gombotz, W. Guanghui, T. A. Horbett, and A. S. Hoffman, "Protein adsorption to poly(ethylene oxide) surfaces," Journal of Biomedical Materials Research, vol. 25, pp. 1547-1562, 1991.
[11] B. Thomes, R. Timmons, and R. Eberhart, "Surface Roughness and Surface Chemistry Effects on Protein Adsorption," in Biomedical Engineering Conference, 1998. Proceedings of the 17th Southern, 1998, pp. 47-47.
[12] Y. V. Pan, Y. Hanein, D. Leach-Scampavia, K. F. Bohringer, B. D. Ratner, and D. D. Denton, "A precision technology for controlling protein adsorption and cell adhesion in bioMEMS," in Micro Electro Mechanical Systems, 2001. MEMS 2001. The 14th IEEE International Conference on, 2001, pp. 435-438.
[13] J. A. Kim, J. Y. Lee, S. Seong, S. H. Cha, S. H. Lee, J. J. Kim, et al., "Fabrication and characterization of a PDMS–glass hybrid continuous-flow PCR chip," Biochemical Engineering Journal, vol. 29, pp. 91-97, 2006.
[14] Y. Koc, A. De Mello, G. McHale, M. I. Newton, P. Roach, and N. J. Shirtcliffe, "Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment," Lab on a Chip, vol. 8, pp. 582-586, 2008.
[15] W. Huimin, G. Nie, and F. Kui, "Cellular Automata Model of Protein Adsorption on the Surface of Bioceramics," in Natural Computation, 2008. ICNC '08. Fourth International Conference on, 2008, pp. 417-420.
[16] M. E. Vlachopoulou, P. S. Petrou, S. E. Kakabakos, A. Tserepi, and E. Gogolides, "High-aspect-ratio plasma-induced nanotextured poly(dimethylsiloxane) surfaces with enhanced protein adsorption capacity," Journal of Vacuum Science & Technology B, vol. 26, pp. 2543-2548, 2008.
[17] L. B. Carneiro, J. Ferreira, M. J. L. Santos, J. P. Monteiro, and E. M. Girotto, "A new approach to immobilize poly(vinyl alcohol) on poly(dimethylsiloxane) resulting in low protein adsorption," Applied Surface Science, vol. 257, pp. 10514-10519, 2011.
[18] P. M. van Midwoud, A. Janse, M. T. Merema, G. M. M. Groothuis, and E. Verpoorte, "Comparison of Biocompatibility and Adsorption Properties of Different Plastics for Advanced Microfluidic Cell and Tissue Culture Models," Analytical Chemistry, vol. 84, pp. 3938-3944, 2012.
[19] K. Okano, A. Matsui, Y. Maezawa, M. Matsubara, Y. Hosokawa, H. Tsubokawa, et al., "Laser-assisted control of protein adsorption for dynamically arranging viable cells," in Lasers and Electro-Optics Pacific Rim (CLEO-PR) Conference on, 2013, pp. 1-2.
[20] S. C. Terry, J. H. Jerman, and J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer," Electron Devices, IEEE Transactions on, vol. 26, pp. 1880-1886, 1979.
[21] D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, "Capillary electrophoresis and sample injection systems integrated on a planar glass chip," Analytical Chemistry, vol. 64, pp. 1926-1932, 1992.
[22] L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, and W. A. MacCrehan, "Fabrication of plastic microfluid channels by imprinting methods," Anal Chem, vol. 69, pp. 4783-9, 1997.
[23] E. Vazquez, C. Rodriguez, A. Elias-Zuniga, and J. Ciurana, "An experimental analysis of process parameters to manufacture metallic micro-channels by micro-milling," The International Journal of Advanced Manufacturing Technology, vol. 51, pp. 945-955, 2010.
[24] J. S. Mecomber, D. Hurd, and P. A. Limbach, "Enhanced machining of micron-scale features in microchip molding masters by CNC milling," International Journal of Machine Tools and Manufacture, vol. 45, pp. 1542-1550, 2005.
[25] M. Y. Ali, "Fabrication of microfluidic channel using micro end milling and micro electrical discharge milling," International Journal of Mechanical and Materials Engineering, vol. 4, pp. 93-97, 2009.
[26] M. L. Hupert, W. J. Guy, S. D. Llopis, H. Shadpour, S. Rani, D. E. Nikitopoulos, et al., "Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices," Microfluidics and Nanofluidics, vol. 3, pp. 1-11, 2007.
[27] E. Topal, "The role of stepover ratio in prediction of surface roughness in flat end milling," International Journal of Mechanical Sciences, vol. 51, pp. 782-789, 2009.
[28] B. J. Polk, A. Stelzenmuller, G. Mijares, W. MacCrehan, and M. Gaitan, "Ag/AgCl microelectrodes with improved stability for microfluidics," Sensors and Actuators B: Chemical, vol. 114, pp. 239-247, 2006.
[29] M. Heckele, W. Bacher, and K. D. Muller, "Hot embossing - The molding technique for plastic microstructures," Microsystem Technologies, vol. 4, pp. 122-124, 1998.
[30] S. Yu-Chuan, S. Jatan, and L. Liwei, "Implementation and analysis of polymeric microstructure replication by micro injection molding," Journal of Micromechanics and Microengineering, vol. 14, p. 415, 2004.
[31] C.-H. Chiou, G.-B. Lee, H.-T. Hsu, P.-W. Chen, and P.-C. Liao, "Micro devices integrated with microchannels and electrospray nozzles using PDMS casting techniques," Sensors and Actuators B: Chemical, vol. 86, pp. 280-286, 2002.
[32] M. L. Hupert, W. J. Guy, S. D. Llopis, C. Situma, S. Rani, D. E. Nikitopoulos, et al., "High-precision micromilling for low-cost fabrication of metal mold masters," 2006, pp. 61120B-61120B-12.
[33] H. Becker and C. Gartner, "Polymer microfabrication technologies for microfluidic systems," Analytical and Bioanalytical Chemistry, vol. 390, pp. 89-111, 2008.
[34] P.-C. Chen, C.-W. Pan, W.-C. Lee, and K.-M. Li, "An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate," The International Journal of Advanced Manufacturing Technology, vol. 71, pp. 1623-1630, 2014.
[35] 許藝菊. (2012). 常壓電漿原理、技術與應用. Available:http://120.117.2.18/handle/987654321/34947
[36] Q. He, Z. Liu, P. Xiao, R. Liang, N. He, and Z. Lu, "Preparation of Hydrophilic Poly(dimethylsiloxane) Stamps by Plasma-Induced Grafting," Langmuir, vol. 19, pp. 6982-6986, 2003.
[37] C. W. Beh, W. Zhou, and T. H. Wang, "PDMS-glass bonding using grafted polymeric adhesive--alternative process flow for compatibility with patterned biological molecules," Lab Chip, vol. 12, pp. 4120-7, 2012.
[38] Bhattacharya, Shantanu, Arindom, Berg, J. M., Gangopadhyay, et al., Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength vol. 14. New York, NY, ETATS-UNIS: Institute of Electrical and Electronics Engineers, 2005.
[39] Intivrogen. (2008). NanoOrangeR Protein Quantitation Kit. Available:https://tools.lifetechnologies.com/content/sfs/manuals/mp06666.pdf
[40] S. K. Sia and G. M. Whitesides, "Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies," Electrophoresis, vol. 24, pp. 3563-3576, 2003.

QR CODE