簡易檢索 / 詳目顯示

研究生: 陳重均
Chung-chun Chen
論文名稱: 騎自行車機器人之設計與製作
The Development of a Bicycle-Riding Robot
指導教授: 李維楨
Wei-chen (George) Lee
口試委員: 王勵群
L. T. Wang
蔡高岳
Kao-Yueh Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 80
中文關鍵詞: 自行車機器人踩踏四連桿機構馬達驅動力矩
外文關鍵詞: pedaling, four-bar linkage
相關次數: 點閱:154下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目標為設計與製作一機器人,使其能騎乘一般自行車,此機器人包含骨架部分、傳動機構、肢體連桿部分及控制系統。本研究也探討四連桿機構的長度組合應用於踩踏自行車的場合,並且研究踩踏機構的驅動方式。經研究發現,踩踏平台的腿部連桿長度會影響上、下死點的位置,選擇適合的腿部長度組合將有助於克服踩踏自行車時的死點問題。另外,在踩踏平台的驅動方式上,兩顆馬達以對稱偏心的方式固定於骨架上,藉由傳動系統搭配單向傳動的零件是較好的選擇。本論文的傳動機構是以鏈輪及鏈條為主,實際測試後發現機器人可順利在平滑的路面上踩踏自行車,驅使自行車達到前進的目標。本研究提供選定馬達之驅動力矩的方法,藉由分析軟體的模擬及計算得出馬達之驅動力矩,而該模擬僅包含腿部機構並未包括自行車及傳動機構,模擬及計算之結果與實際量測馬達驅動力矩之數據的相對誤差為17.8%。


    The objective of this paper is to develop a robot that can ride a regular bicycle. This paper will present the effect of length combinations for a four-bar mechanism and the driving methods of pedaling. The balancing system has not been developed yet, so assisting wheels are used with the bicycle to accomplish all the tests in this paper.
    The length combinations of the leg mechanism will affect the position of lower or upper dead center. It is helpful for overcoming the problem of dead center. A proper combination of leg mechanism was found to help the robot to ride the bicycle passing the dead center. Also, unidirectional transmission mechanism can resolve the problem of dead center. This research uses ratchet wheels and chains as transmission mechanisms. As a result, using a proper length combination of leg mechanism and a correct driving method can be successful to drive the robot to ride the bicycle with its legs.

    第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目標 8 1.4 論文架構 8 第二章 騎自行車機器人平台系統架構 9 2.1 機構平台 10 2.1.1 自行車部分 13 2.1.2 機器人身體骨架部分 14 2.1.3 機器人四肢連桿 15 2.1.4 驅動系統 17 2.1.5 傳動機構 18 2.2 控制系統 19 第三章 踩踏平台設計 21 3.1 腿部連桿長度設計原理 21 3.1.1 第一版腿部連桿長度設計 21 3.1.2 第二版腿部連桿長度設計 21 3.1.3 考慮傳遞角之連桿長度設計 27 3.2 踩踏機構之驅動方式設計 33 3.2.1 單馬達驅動單腿 34 3.2.2 加裝彈簧之單馬達驅動單腿 35 3.2.3 雙馬達驅動雙腿 36 3.2.4 搭配棘輪之雙馬達驅動雙腿 38 3.3 腿部機構之驅動方式討論 45 第四章 踩踏驅動力矩之推導與模擬 49 4.1 自行車曲柄之驅動力矩 49 4.2 腿部機構之力矩模擬 50 4.2.1 模擬軟體介紹 50 4.2.2 踩踏機構之模擬設定 50 4.2.3 踩踏機構之模擬結果 54 4.3 傳動機構的力矩傳動 56 4.4 利用矩陣法計算驅動力矩 57 第五章 踩踏力矩之實驗與結果 60 5.1 量測滾動阻力係數 60 5.2 驅動曲柄的力矩量測 65 5.3 踩踏機構之馬達的驅動力矩實驗 66 5.3.1 實驗設備 66 5.3.2 實驗方式 66 5.4 踩踏機構之馬達的驅動力矩實驗結果 69 5.5 踩踏機構之馬達的驅動力矩實驗結果與驗證 70 第六章 結論及未來展望 72 6.1 結論 72 6.2 未來展望 73 參考文獻 74 附錄 76

    [1] 中華民國行政院經濟部工業局, "http://www.moeaidb.gov.tw/," 2005.
    [2] 李國銘, "智慧型機器人科專研發方向及產業推動策略," 金屬中心, 2005.
    [3] Ltd. Murata Manufacture Co., "Murata Boy." 2009.
    [4] Z. Sheng and K. Yamafuji, "Postural stability of a human riding a unicycle and its emulation by a robot," IEEE Transactions on, Robotics and Automation, vol. 13, pp. 709-720, 1997.
    [5] D. Aydemir and H. Iba, "Learning Bicycle Control Behavior with Humanoid Robot Using Reinforcement Learning," Nippon Robotto Gakkai Gakujutsu Koenkai Yokoshu, vol. 23, p. 3E14, 2005.
    [6] K. Iuchi, H. Niki, and T. Murakami, "Attitude control of bicycle motion by steering angle and variable COG control," IECON Proceedings (Industrial Electronics Conference), pp. 2065-2070, 2005.
    [7] P. Sooraksa, T. Pattaradej, and G. Chen, "Design and implementation of fuzzy P2ID controller for handlebar control of a bicycle robot," Integrated Computer-Aided Engineering, vol. 9, pp. 319-331, 2002.
    [8] Y. Tanaka and T. Murakami, "Self sustaining bicycle robot with steering controller," International Workshop on Advanced Motion Control, AMC, pp. 193-197, 2004.
    [9] 李怡德, "無人自行車之非線性平衡控制與實現," 電機工程學系: 國立中興大學, 2003.
    [10] 林洋鑫, "無人自行車之平衡控制與實現," 電機工程學系: 國立中興大學, 2000.
    [11] 陳志達, "電動助行車與無人自行車之控制系統研製," 電機工程學系: 國立中興大學, 1998.
    [12] 游富雄, "具有平衡質量塊之無人自行車系統設計與控制," 電機工程學系: 國立中興大學, 2004.
    [13] 楊可農, "無人騎乘自行車系統設計與穩定行駛控制之研究," 自動化研究所: 大葉大學, 2006.
    [14] 楊智凱, "無人自行車操控動態建立與控制," 自動化研究所: 大葉大學, 2003.
    [15] 劉育江, "無人自行車系統設計與操控實驗," 自動化研究所: 大葉大學, 2005.
    [16] 郭磊,廖啟征,魏世民, "自行車機器人動力學建模與MIMO回饋線性化," 北京郵電大學學報, vol. 30, pp. 80-84, 2007.
    [17] 郭磊,廖啟征,魏世民, "用速率陀螺儀實現基於單片機的角度隨動系統研究-在自行車機器人的平衡控制中的應用," 機電產品開發與創新, vol. 18, pp. 1-3, 2007.
    [18] 郭磊,廖啟征,魏世民, "基於電位計實現自行車機器人的擬人智能控制," 交通電氣, vol. 24, pp. 100-103, 2007.
    [19] K. J. Astrom, R. E. Klein, and A. Lennartsson, "Bicycle dynamics and control: adapted bicycles for education and research," IEEE, Control Systems Magazine, vol. 25, pp. 26-47, 2005.
    [20] Drilllis, R. and R. Contini., Body Segment Parameters, 1966.
    [21] G. N. S. G. Erdman, Sridhar Kota, Mechanism Design, 4 ed. vol. 1, 2001.
    [22] J. Yamakawa, A. Kojima, and K. Watanabe, "A method of torque control for independent wheel drive vehicles on rough terrain," Journal of Terramechanics, vol. 44, pp. 371-381, 2007.
    [23] Ltd. Shayang Ye Industry Co., "motor characteristics," 2006.

    無法下載圖示 全文公開日期 2014/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE