簡易檢索 / 詳目顯示

研究生: 李學文
Hsueh-Wen Lee
論文名稱: 具雙線性遲滯行為之隔震系統性能設計方法
Performance-based design of seismic isolation systems with bilinear hysteretic behavior
指導教授: 汪向榮
Shiang-Jung Wang
口試委員: 黃震興
Jenn-Shin Hwang
黃尹男
Yin-Nan Huang
游忠翰
Chung-Han Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 204
中文關鍵詞: 建築物耐震設計規範及解說隔震建築物設計耐震設計 規範修訂性能設計靜力分析流程
外文關鍵詞: seismic isolation, design provision, equivalent analysis, bounding analysis, damping modification factor, performance-oriented design
相關次數: 點閱:318下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

針對美國規範(ASCE/SEI 7-16)中重大修訂內容,包括隔震系統
上下界特性之定義、隔震系統最大總位移之計算方式、以及隔震結構
地震力豎向分配之方法,闡明規範設計概念與理論基礎,並與舊有規
範(如台灣現行規範)中相對應的隔震建築設計規範內容,進行理論
探討及案例分析,提供國內隔震建築設計規範修正參考。
針對具雙線性遲滯行為之隔震系統,本研究探討於不同需求之設
計參數合理性,以及實務應用之可行性。並提出一以性能指標為設計
參數之等效線性靜力分析設計流程,即組合十四(以三個性能指標作
為給定參數,即設計位移、設計加速度、與永久殘餘變形),並考量實
務應用之可行性;此外,以國內近斷層地震效應下之阻尼比修正係數
之相關研究結果進行設計與動力分析,結果顯示本研究之設計流程可
以合理地應用考量近斷層效應之公式,且對於近斷層效應造成之隔震
位移有一定掌握程度;對於美國規範中考量隔震元件力學特性變異性
之方式,本研究亦針對我國耐震設計規範之內容以及特性,擬將變異
性考量方式推廣至設計階段,即考量隔震系統設計參數變異性之方法,
且根據前述對多種設計參數組合之探討結果決定考量變異性之設計
流程,並以案例分析驗證其保守性與可行性,供國內規範修訂與業界
參考。


Three major revisions relevant to seismic isolation design in Chapter
17 of ASCE/SEI 7-16, i.e. bounding analysis for seismic isolation systems,
calculation of total maximum displacement of seismic isolation systems,
and vertical distribution of lateral seismic force to seismically isolated
structures, are theoretically and numerically examined in this study. The
further comparisons of numerical results based these revisions and the
current design provision in Taiwan can provide important references for
future reasonable and necessary revisions.
During the equivalent lateral force procedure for designing a structure
isolated with a bilinear hysteretic isolation system, several previously
determined parameters, such as mechanical properties of seismic isolation
systems or design parameters and performance indices of seismically
isolated structures, are required. To better meet the principle of
performance-oriented design and after examining several practical
combinations, an analysis procedure with the three performance indices
decided in advance, i.e. acceleration transability, isolation displacement,
and post-earthquake residual displacement, is proposed in this study. With
considering damping modification factors varied with different equivalent
damping ratios as well as different ratios of effective periods of seismic
isolation systems to pulse periods of ground motions, response spectra of
pulse-like near-fault ground motions are employed to examine the practical
feasibility, accuracy, and conservatism of the proposed analysis procedure.
The numerical comparison results show that the approximations by the
proposed analysis procedure can present comparable maximum inelastic
displacement and acceleration responses of seismic isolation systems to the
nonlinear dynamic response history analysis results. Moreover, to consider
variations of design parameters of seismically isolated structures attributed to uncertainties of mechanical properties of seismic isolation systems,
bounding analysis for seismic isolation design is conducted. The analysis
results indicate that considering a specific variation for two design
parameters (the effective stiffness and equivalent damping ratio), which
might be easier and more intuitive for structural designers in practice, can
almost present more conservative bounding design results than considering
the same variation but for two mechanical properties (the characteristic
strength and post-yield stiffness).

摘 要 ABSTRACT 誌 謝 目 次 表 次 圖 次 第一章 緒論 1.1 研究背景及目的 1.2 研究重點及內容 1.2.1 ASCE/SEI 7-16 隔震規範重要變革 1.2.2 隔震系統性能設計方法 第二章 文獻回顧 2.1. 等效線性靜力分析流程 2.2. 近斷層脈衝及阻尼比修正係數 2.3. 雙線性隔震系統殘餘變形 2.4. 隔震結構地震力豎向分配 第三章 ASCE/SEI 7-16 隔震規範主要變革探討 隔震系統之上界與下界特性 3.1.1 規範變革探討 3.1.2 案例分析 隔震系統之最大總位移 3.2.1 規範變革探討 3.2.2 案例分析 隔震系統之地震力豎向分配方法 3.3.1 規範變革探討 3.3.2 案例分析 3.3.2.1 數值模型案例 3.3.2.2 實際建物案例 第四章 隔震結構性能設計 4.1 前言 4.2 等效線性靜力分析設計流程 4.2.1 設計參數可行性探討 4.2.2 分析結果探討 4.3 考量近斷層效應之阻尼比修正係數 4.4 考量隔震系統設計參數變異性 第五章 結論與建議 5.1 ASCE/SEI 7-16 隔震規範主要變革探討 5.2 隔震結構性能設計 5.3 未來工作 參考文獻 附表 附圖

【1】 內政部營建署,“建築物耐震設計規範 及解說 ”,臺北,
2005。
【2】 Building Seismic Safe Council for the Federal Emergency
Management Agency (1997), “ NEHRP Guidelines and
Commentary for the Seismic Rehabilitation of Buildings, 1997
Edition, Part 1: Guidelines and Part 2: Commentary,” Report Nos.
FEMA 273 and 274, Washington, D.C..
【3】 Building Seismic Safe Council for the Federal Emergency
Management Agency (2000), “ NEHRP Recommended
Provisions for Seismic Regulations for New Buildings and other
Structures, 2000 Edition, Part 1: Provisions and Part 2:
Commentary,” Report Nos. FEMA 368 and 369, Washington,
D.C..
【4】 Building Seismic Safe Council for the Federal Emergency
Management Agency (2003), “ NEHRP Recommended
Provisions for Seismic Regulations for New Buildings and other
Structures, 2003 Edition, Part 1: Provisions and Part 2:
Commentary,” ,” Report Nos. FEMA 450, Washington, D.C..
【5】 American Society of Civil Engineers (ASCE). (2006).
“Minimum design loads and associated criteria for buildings and
other structures” ASCE/SEI 7-05, American Society of Civil
Engineers, Reston, Virginia.
【6】 American Society of Civil Engineers (ASCE). (2010).
“Minimum design loads and associated criteria for buildings and
other structures” ASCE/SEI 7-10, American Society of Civil
Engineers, Reston, Virginia.
【7】 American Society of Civil Engineers (ASCE). (2017).
“Minimum design loads and associated criteria for buildings and
other structures”, ASCE/SEI 7-16, American Society of Civil
Engineers, Reston, Virginia.
【8】 盧煉元、王亮偉、陳慶輝、李官峰、李姿瑩、蔡諄昶,“以性
能為導向之二階段隔震設計法”, 結構工程 第三十一卷 第
三期 第33-61 頁,民國105 年9 月。
【9】 Wallat, S. (1990). “A Wavelet Tour of Signal Processing. ”。
【10】 Baker, J. W. (2007). “Quantitative classification of near-fault
ground motions using wavelet analysis. ” Bulletin of the
Seismological Society of America, 97(5), 1486-1501.
【11】 Shahi, S. K., and Baker, J. W. (2014), “An efficient algorithm to
identify strong-velocity pulses in multicomponent ground
motions.” Bulletin the seismological society of America, 104(5),
2456-2466.
【12】 Baker, J. W., & Allin Cornell, C. (2005). “A vector‐valued
ground motion intensity measure consisting of spectral
acceleration and epsilon. ” Earthquake Engineering & Structural
Dynamics, 34(10), 1193-1217.
【13】 Baker, J. W., & Cornell, C. A. (2006). “Vector-valued ground
motion intensity measures for probabilistic seismic demand
analysis. ” Pacific Earthquake Engineering Research Center,
College of Engineering, University of California, Berkeley.
【14】 Baker, J. W., & Cornell, C. A. (2008). “ Vector-valued intensity
measures for pulse-like near-fault ground motions. Engineering
structures, ” 30(4), 1048-1057.
【15】 Priestley, M. J. N., & Society of Earthquake and Civil
Engineering Dynamics. (2003). “Myths and fallacies in
earthquake engineering, revisited. ” Pavia, Italy: IUSS Press.
【16】 George D. Hatzigeorgiou. “Damping modification factors for
SDOF systems subjected to near‐fault, far‐fault and artificial
earthquakes. ” Earthquake Engineeri.ng & Structural Dynamics,
39(11).
【17】 Hubbard, D. T., & Mavroeidis, G. P. (2011a). “Damping
coefficients for near-fault ground motion response spectra. ” Soil
Dynamics and Earthquake Engineering, 31(3), 401- 417.
【18】 Pu, W., Kasai, K., Kabando, E. K., & Huang, B. (2016).
“Evaluation of the damping modification factor for structures
subjected to near-fault ground motions. ” Bulletin of Earthquake
Engineering, 14(6), 1519-1544.
【19】 Ya-Heng Yang, and Yin-Nan Huang. (2019). “Design of friction
pendulum (FP) bearing systems subjected to pulse-like ground
motions.”Department of civil engineering college of engineering
National Taiwan University(Master Thesis).
【20】 劉家仁、黃尹男(2015),“近斷層地震對結構隔減震系統效益
之影響研究:單自由度系統”,國立臺灣大學工學院土木工程
學系(碩士論文)。
【21】 Katsaras CP, Panagiotakos TB, Kolias B (2008). “Restoring
capability of bilinear hysteretic seismic isolation systems.”
Earthquake Engineering and Structural Dynamics; 37: 557-575.
【22】 York, K., and Ryan, K. (2008). “Distribution of lateral forces in
base-isolated buildings considering isolation system
nonlinearity.”J. Earthq. Eng., 12, 1185–1204.
【23】 Structural Engineers Association of Northern California
(SEAONC) (1986) Tentative Seismic Isolation Design
Requirements. San Francisco, CA.
【24】 Structural Engineers Association of California (SEAOC) (1990)
‘‘Tentative general requirements for the design and construction
of seismic isolated structures,’’ Appendix IL of Recommended
Lateral Force Requirements and Commentary (Blue Book).
Seismology Committee. San Francisco, CA.
【25】 International Conference of Building Officials (ICBO) (1991)
‘‘Earthquake regulations for seismicisolated structures,’’
Chapter 23 of Uniform Building Code, Whittier, CA.
【26】 International Conference of Building Officials (ICBO) (1994)
‘‘Earthquake regulations for seismicisolated structures,’’
Appendix Chapter 16 of Uniform Building Code, Whittier, CA.
【27】 Baker, J. W. (2007). ‘‘Quantitative classification of near-fault
ground motions using wavelet analysis.” Bulletin of the
Seismological Society of America, 97(5), 1486-1501.
【28】 汪向榮、黃震興、林旺春、游忠翰、楊卓諺,“國際隔減震規
範變革與國內規範修訂建議”,國際隔減震規範變革與國內
規範修訂建議說明會,內政部建築研究所,12 月3 日,2019。

QR CODE