簡易檢索 / 詳目顯示

研究生: 張群英
Qun-Ying Zhang
論文名稱: 考慮黏彈性阻尼器超越及殘餘性能之結構減震效益探討
Effectiveness of Damaged Viscoelastic Dampers in Seismic Protection of Structures under Major Earthquakes and Aftershocks
指導教授: 汪向榮
Shiang‐Jung Wang
口試委員: 黃震興
蔡孟豪
游忠翰
汪向榮
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 283
中文關鍵詞: 黏彈性阻尼器設計性能超越設計性能殘餘性能分數微分模型棒狀模型
外文關鍵詞: viscoelastic damper, fractional derivative model, design performance, beyond design performance, residual performance, high-rise damped building structure
相關次數: 點閱:240下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

黏彈性阻尼器安裝於建築結構中,於設計地震力、最大考量地震力或是更大之地震力下,可能使黏彈性阻尼器的變形超過或甚至遠大於其設計剪應變,進而造成黏彈性阻尼器內之黏彈性材料產生損壞,若於設計地震力、最大考量地震力或更大之地震力後有接續餘震,黏彈性阻尼器在損傷的情況下,是否仍能適度提供性能、控制結構反應,將為本研究之探討重點。
透過實尺寸黏彈性阻尼器進行循環加載試驗之試驗結果,將頻率、溫度與剪應變等影響其性能之因素,回歸識別出不同性能階段之分數微分模型,包括設計性能、超越設計性能與殘餘性能階段,並將其簡化為損傷前後之分數微分模型,以便安裝於建築結構中之分析。由預測模擬結果顯示,各性能階段下之分數微分模型,可細部模擬出黏彈應阻尼器受擾動頻率、環境溫度、阻尼器內部溫度造成之軟化、大變形軟化現象與高速率變形硬化現象等影響因素,且能夠約略掌握與保守地預測出黏彈性阻尼器之出力。
將一棟真實新建高層建築之立體複雜結構簡化為一棒狀模型,並以損傷前後之分數微分模型,來模擬安裝黏彈性阻尼器之真實力學行為,探討在大地震以及接續餘震下,損傷前後之黏彈性阻尼器於建築結構中之真實減震效益。由研究結果得知,黏彈性阻尼器雖於大地震中發生損壞,但仍能在大地震中與接續餘震中表現出超越設計與殘餘性能,對建築結構仍能提供適度之減震效益。


Under beyond design earthquakes, the shear deformation of viscoelastic (VE) dampers installed in a building structure might exceed or is even much larger than their nominal design range, thus leading to damage to the VE material. This study aims to discuss if damaged VE dampers can still provide suitable performance and effectively control structural responses during beyond design earthquakes and aftershocks.
Therefore, a series of tests with varied excitation frequency, temperature, and shear strain conditions on full-scale VE dampers were conducted. Based on the test results, different fractional derivative models which can represent the design, beyond design, and residual performances as well as pre‐damage and post-damage performances are identified.
A practical high-rise building structure equipped with VE dampers whose pre‐damage and post-damage performances are considered is numerically analyzed under major earthquakes and aftershocks. The numerical results indicate that although VE dampers are damaged during major earthquakes, they can still provide appropriate performances and effectively reduce structural responses during major earthquakes and aftershocks.

摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究流程與論文架構 3 第二章 文獻回顧 5 2.1 黏彈性阻尼器 5 2.2 建物簡化模型 7 第三章 基本理論 9 3.1 黏彈性材料 9 3.1.1 力學行為 9 3.1.2 分數微分模型 11 3.1.2.1 擾動頻率影響 11 3.1.2.2 環境溫度影響 14 3.1.2.3 阻尼器內部溫度 15 3.1.2.4 大變形軟化現象 15 3.1.2.5 高速率變形硬化現象 16 3.2 建立簡化建物模型 17 第四章 黏彈性阻尼器試驗 19 4.1 試驗配置與程序 19 4.2 試驗結果 20 第五章 黏彈性阻尼器數值分析模型 23 5.1 建立各性能階段之數值分析模型 23 5.1.1 設計性能階段 23 5.1.1.1 擾動頻率影響 23 5.1.1.2 環境溫度影響 24 5.1.1.3 阻尼器內部溫度影響 24 5.1.1.4 大變形軟化現象 25 5.1.1.5 高速率變形硬化現象 25 5.1.2 超越設計性能階段 27 5.1.2.1 擾動頻率影響 27 5.1.2.2 環境溫度影響 27 5.1.2.3 阻尼器內部溫度影響 27 5.1.2.4 大變形軟化現象 27 5.1.2.5 高速率變形硬化現象 28 5.1.3 殘餘性能階段 28 5.1.3.1 擾動頻率影響 28 5.1.3.2 環境溫度影響 29 5.1.3.3 阻尼器內部溫度影響 29 5.1.3.4 大變形軟化現象 29 5.1.3.5 高速率變形硬化現象 29 5.2 數值分析模型預測與試驗結果比較 30 5.2.1 設計性能階段 30 5.2.2 超越設計性能階段 32 5.2.3 殘餘性能階段 32 5.3 小結與討論 33 第六章 含黏彈性阻尼器之建築結構 37 6.1 黏彈性阻尼器之數值分析模型 37 6.2 簡化建築結構分析與探討 38 6.2.1 地震歷時 38 6.2.2 低矮建物分析結果與討論 39 6.2.3 中高建物分析結果與討論 41 6.2.3.1 黏彈性阻尼器未發生損傷 42 6.2.3.2 黏彈性阻尼器發生損傷 43 6.2.4 高樓建物分析結果與討論 46 6.2.4.1 黏彈性阻尼器未發生損傷 46 6.2.4.2 黏彈性阻尼器發生損傷 48 6.3 實際高樓建築結構分析與探討 51 6.3.1 建物資訊 51 6.3.2 棒狀模型 51 6.3.3 分析結果與討論 52 6.3.3.1 黏彈性阻尼器未發生損傷 52 6.3.3.2 黏彈性阻尼器發生損傷 54 6.4 小結 56 第七章 結論與建議 57 7.1 結論 57 7.2 建議 59 參考文獻 61 附錄一 中高建物分析結果 227 附錄二 高樓建物分析結果 234 附錄三 實際高樓建築分析結果 240

[1] 內政部營建署, 建築物耐震設計規範及解說. 臺北, 2011.
[2] T. Soong and M. Constantinou, Passive and active vibration control in civil engineering. 1994.
[3] K. C. Chang, T. T. Soong, M. L. Lai, and E. J. Nielsen, "Viscoelastic dampers as energy dissipation devices for seismic applications," Earthquake Spectra, vol. 9, no. 3, pp. 371-387, 1993.
[4] B. Samali and K. C. S. Kwok, "Use of viscoelastic dampers in reducing wind- and earthquake-induced motion of building structures," Engineering Structures, vol. 17, no. 9, pp. 639-654, 1995.
[5] P. Mahmoodi, L. E. Robertson, M. Yontar, C. Moy, and L. Feld, "Performance of viscoelastic dampers in world trade center towers," Orlando, Florida, 1987.
[6] J. B. Skilling, T. Tschanz, N. Isyumov, P. Loh, and A. G. Devenport, "Experimental studies, structural design and full-scale measurements for the columbia seafirst center," Seattle, Washington, 1986.
[7] J. E. Cermak, H. G. C. Woo, M. L. Lai, J. Chen, and S. L. Danielson, "Aerodynamic instability and damping on a suspension roof," Asia-Pacific Symposium on Wind Engineering, pp. 13-15, 1993.
[8] K. Kasai, M. Teramoto, K. Okuma, and K. Tokoro, "Constitutive rule for viscoelastic materials considering temperature, frequency, and strain sensitivities : Part 1 Linear model with temperature and frequency sensitivities," Journal of Structural and Construction Engineering (Transactions of AIJ), vol. 66, no. 543, pp. 77-86, 2001.
[9] K. Kasai and K. Tokoro, "Constitutive rule for viscoelastic materials considering temperature, frequency, and strain sensitivities : Part 2 Nonlinear model based on temperature-rise, strain and' strain-rate," Journal of Structural and Construction Engineering (Transactions of AIJ), vol. 67, pp. 55-63, 2002.
[10] D. M. Bergman and R. D. Hanson, "Viscoelastic mechanical damping devices tested at real earthquake displacements," Earthquake Spectra, vol. 9, no. 3, pp. 389-417, 1993.
[11] M. L. Lai, K. C. Chang, T. T. Soong, D. S. Hao, and Y. C. Yeh, "Full-scale viscoelastically damped steel frame," Journal of Structural Engineering, vol. 121, no. 10, pp. 1443-1447, 1995.
[12] Z. D. Xu, C. Xu, and J. Hu, "Equivalent fractional Kelvin model and experimental study on viscoelastic damper," Journal of Vibration and Control, vol. 21, 2013.
[13] A. M. G. de Lima, D. A. Rade, H. B. Lacerda, and C. A. Araújo, "An investigation of the self-heating phenomenon in viscoelastic materials subjected to cyclic loadings accounting for prestress," Mechanical Systems and Signal Processing, vol. 58-59, pp. 115-127, 2015.
[14] A. Gemant, "A method of analyzing experimental results obtained from elasto-viscous bodies," Physics, vol. 7, no. 8, pp. 311-317, 1936.
[15] R. Bagley and P. Torvik, "Fractional Calculus – A Different Approach to the Analysis of Viscoelastically Damped Structures," Aiaa Journal - AIAA J, vol. 21, pp. 741-748, 05/01 1983.
[16] R. Lewandowski and B. Chorążyczewski, "Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers," Computers & Structures, vol. 88, no. 1, pp. 1-17, 2010.
[17] S. W. Park, "Analytical modeling of viscoelastic dampers for structural and vibration control," International Journal of Solids and Structures, vol. 38, no. 44, pp. 8065-8092, 2001.
[18] T. T. Soong and B. F. Spencer, "Active structural control: theory and practice," Journal of Engineering Mechanics, vol. 118, no. 6, pp. 1282-1285, 1992.
[19] K. C. Chang, T. Soong, S. T. Oh, and M. Lai, "Effect of ambient temperature on viscoelastically damped structure," Journal of Structural Engineering-asce - J STRUCT ENG-ASCE, vol. 118, 1992.
[20] K. C. Chang, T. T. Soong, S. T. Oh, and M. L. Lai, "Seismic behavior of steel frame with added viscoelastic dampers," Journal of Structural Engineering, vol. 121, no. 10, pp. 1418-1426, 1995.
[21] K. C. Chang, S. J. Chen, and M. L. Lai, "Inelastic behavior of steel frames with added viscoelastic dampers," Journal of Structural Engineering, vol. 122, no. 10, pp. 1178-1186, 1996.
[22] K. C. Chang, M. H. Tsai, Y. H. Chang, and M. L. Lai, "Temperature rise effect of viscoelastically damped structures under strong earthquake ground motions," Journal of Mechanics, vol. 14, no. 3, pp. 125-135, 1998.
[23] A. R. Ghaemmaghami and O.-S. Kwon, "Nonlinear modeling of MDOF structures equipped with viscoelastic dampers with strain, temperature and frequency-dependent properties," Engineering Structures, vol. 168, pp. 903-914, 2018.
[24] N. Nakamura, "Improved methods to transform frequency‐dependent complex stiffness to time domain," Earthquake Engineering & Structural Dynamics, vol. 35, pp. 1037-1050, 07/10 2006.
[25] K. M. Mosalam and M. S. Günay, "Seismic retrofit of non-ductile reinforced concrete frames using infill walls as a rocking spine," in Advances in Performance-Based Earthquake Engineering: Springer, 2010, pp. 349-357.
[26] K. L. Shen, T. T. Soong, K. C. Chang, and M. L. Lai, "Seismic behaviour of reinforced concrete frame with added viscoelastic dampers," Engineering Structures, vol. 17, no. 5, pp. 372-380, 1995.
[27] P. Crosby, J. Kelly, and J. P. Singh, "Utilizing visco-elastic dampers in the seismic retrofit of a thirteen story steel framed building," in Proceedings of Structures Congress Xll, Atlanta, Georgia, 1994, pp. 1286-1291.
[28] L. S. Jacobsen, "Dynamic behavior of simplified structures up to the point of collapse," in Proceedings of the Symposium on Earthquake and Blast Effects on Structures, Los Angeles, California, 1952.
[29] J. Penzien, "Dynamic response of elasto-plastic frames," Transactions of the American Society of Civil Engineers, vol. 127, no. 2, pp. 1-13, 1960.
[30] A. S. Veletsos, N. M. Newmark, U.-C. University of Illinois at, and E. Department of Civil, Effect of inelastic behavior on the response of simple systems to earthquake motions. 1960.
[31] G. S. Liou and Y. Y. Kang, "A simplified model for seismic analysis of building structures," in The Third East Asia-Pacific Conference on Structural Engineering Construction, 1991.
[32] 康閱印與劉俊秀, "房屋結構非線性動力分析之簡化模式," 國立交通大學土木工程研究所碩士論文, 1990.
[33] 梁有忠與劉俊秀, "立體房屋結構非線性動力分析之簡化模式," 國立交通大學土木工程研究所碩士論文, 1992.
[34] 鄭聰富與劉俊秀, "平面斜撐構架非線性動力分析之簡化模式," 國立交通大學土木工程研究所碩士論文, 1992.
[35] 鄒季峯、鍾立來與劉俊秀, "棒狀模型非線性歷時分析與消能評估," 國立交通大學土木工程研究所碩士論文, 2015.
[36] 邱宜甄, "含黏彈性阻尼器結構超越設計變位之試驗分析研究," 2017.
[37] Nippon Steel & Sumitomo Metal Corporation. Available: http://www.nssmc.com/
[38] C. S. Tsai and H. H. Lee, "Applications of Viscoelastic Dampers to High‐Rise Buildings," Journal of Structural Engineering, vol. 119, no. 4, pp. 1222-1233, 1993/04/01 1993.

QR CODE