簡易檢索 / 詳目顯示

研究生: 陳映雪
Ying-Hsueh Chen
論文名稱: 矽光子光學相位陣列的相位修正與量測平台優化
Phase Correction of Silicon Photonics Optical Phase Arrays and Improvement on Measurement Platform
指導教授: 李三良
San-Liang Lee
口試委員: 何文章
Wen-Jeng Ho
廖顯奎
Shien-Kuei Liaw
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 123
中文關鍵詞: 矽光子光學相位陣列相位修正
外文關鍵詞: Silicon photonic, Optical phase array, Phase error correction
相關次數: 點閱:330下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來隨著自動駕駛車的發展,對於感測器的需求漸增,利用矽光子 技術實現全固態式光學雷達,可利用矽光子低功耗、可積體化等特性,以 及光學雷達具高解析度及較大掃描角的優點,在此應用領域具極大的優 勢及未來展望。
此晶片以次波長波導的光學天線陣列達到均勻出光,經過驗證,光學 波導方向上的光束發散角約 0.165 度。在相位修正方面,我們將連接天線 的相移器安排成樹狀多級結構,以利與群組相位修正技術結合,每一級皆 由兩個電極來控制左右的波導,以減少晶片的電極,並且在經過四級的相 位修正後,其 PSLL 可以來到 5.6 分貝。我們著重於探討熱效應對於晶片 的影響,透過使用短脈衝來調整相位,可以降低熱效應對鄰近光學開關及 光學相位陣列的串擾,使熱相移器可以操作在較大的驅動電壓。
本論文也著重在量測平台的改良,原量測平台受限於角度而無法量測 較大散射角的遠場,設計新的遠場量測平台,使紅外光照相機可以晶片原 中心做轉動,實現較大角度的遠場量測。


In recent years, with the development of autonomous vehicles, the demand for optical sensors has been increasing. The silicon photonics technology used to realize solid-state optical radar has become advantageous in this field due to its low power consumption, integration capabilities, as well as the high resolution and larger scanning angles provided by optical radar.
In this chip, the optical antenna array with subwavelength waveguide gratings enhances the emission uniformity and reduce the beam divergent angle. The experimental results demonstrate a beam divergence angle of approximately 0.165 degrees in the optical waveguide direction. In terms of phase correction, we arrange the phase shifters connecting to the optical antennas into a multi-stage tree structure, where two electrodes are used to control the phase shifters at each stage, in order to reduce the number of electrodes on the chip. After four stages of phase error correction, the peak side lobe level (PSLL) reaches 5.6 dB. We also focus on exploring the impact of thermal effects on the phase tuning. By using short pulses to tune the phases, the thermal crosstalk can be suppressed, so the phase tuning can be maintained for a higher tuning voltage.
This thesis also focuses on improving the measurement platform by designing a new far-field measurement platform. In the previous measurement setup, the measurable beam steering angle of the far-field was limited to a few degrees. The infrared camera can rotate around the center of the chip in the new stage, and a larger far-field angle can be measured.

摘要 ...............II ABSTRACT. III 致謝 ............. IV 目錄 .............. V 圖目錄 ...... VIII 表目錄 ........XV 1 第一章 緒論.............................. 1 1.1 前言.............................1 1.2 研究動機 ..................... 2 1.3 光學相控陣列回顧.....3 1.4 論文架構 ..................... 7 2 第二章 光學天線陣列相關原理 .............................. 8 2.1 光束轉動原理.............8 2.2 光學天線陣列遠場映射............................ 10 2.3 近場與遠場繞射相關原理........................13 2.3.1 菲涅爾繞射........13 2.3.2 夫朗和斐繞射....14 2.4 分群相位修正...........15 3 第三章 元件介紹.................... 18 3.1 多模干涉耦合器.......18 3.2 相位位移器...............19 3.3 光學天線陣列...........20 4 第四章 量測架構及晶片介紹 ..............23 4.1 量測架構簡介...........23 4.2 量測前置作業與校準 ............................... 23 4.2.1 晶片位置校準....24 4.2.2 光纖位置校準....25 4.3 量測平台優化及改良 ............................... 27 4.4 IMEC-SiPh 110A 矽光子晶片量測 ........... 32 4.4.1 晶片結構介紹....33 4.4.2 主要量測元件....35 4.4.3 量測架構說明....36 4.4.4 晶片焊線............37 4.5 IMEC-SiPh 109 矽光子晶片量測 .............. 39 4.5.1 晶片結構說明....40 4.6 量測方式................... 41 4.6.1 邊緣耦合............41 4.6.2 垂直耦合............48 5 第五章 量測結果與分析........50 5.1 IMEC-SiPh 110A 量測結果 ....................... 50 5.1.1 測試元件結果......................50 5.1.2 主元件近場量測 ................................ 51 5.1.3 主元件遠場量測......................53 5.1.4 相位修正結果....57 5.2 IMEC-SiPh 109 矽光子晶片量測 .............. 80 5.2.1 光學開關量測....80 5.2.2 光學開關量測結果與分析.................82 6 第六章 結論與未來發展........98 6.1 成果與討論...............98 6.2 未來發展方向...........99 7 參考文獻 ............................... 101 8 附件.......105

[1] R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kato, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, R. H. Miles, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, S. C. Pennypacker, J. L. Pleumeekers, R. A. Salvatore, R. K. Schlenker, R. B. Taylor, T. Huan- Shang, M. F. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, and D. F. Welch, "Large-scale photonic integrated circuits," IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, no. 1, pp. 50-65, 2005, doi: 10.1109/jstqe.2004.841721.
[2] W. Duan, J. Bian, J. Yu, J. Shi, and Z. Liu, "Ultrathin Crystalline Silicon Heterojunction Solar Cell Integrated on Silicon-on-Insulator Substrate," IEEE Transactions on Electron Devices, vol. 62, no. 4, pp. 1113-1118, 2015, doi: 10.1109/ted.2015.2402175.
[3] A. Manissh, M. Choudhary, R. Rishi, and A. A. Linsie, "Analysis of Silicon-on-Insulator based Planar Optical Waveguide," presented at the 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), 2023.
[4] S. Chung, H. Abediasl, and H. Hashemi, "A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS," IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 275-296, 2018, doi: 10.1109/jssc.2017.2757009.
[5] D. Li, Y. Liu, Q. Song, J. Du, and K. Xu, "Millimeter-Long Silicon Photonic Antenna for Optical Phased Arrays at 2-μm Wavelength Band," IEEE Photonics Journal, vol. 13, no. 2, pp. 1-7, 2021, doi: 10.1109/jphot.2021.3059844.
[6] M. Tao, T. Peng, C. Ding, J. Guan, Y. Li, L. Zhang, B. Chena, L. Gao, X. Li, J. Song, and F. Gao, "A Large-Range Steering Optical Phased Array Chip and High-Speed Controlling System," IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-12, 2022, doi: 10.1109/tim.2021.3139692.
[7] T. Kita, Y. Chiba, and H. Yamada, "Silicon photonic wavelength tunable laser diode with low loss direct heating phase shifter," in 2017 IEEE 14th International Conference on Group IV Photonics (GFP), 2017: IEEE, pp.100
125-126.
[8] M. Pu, L. Liu, W. Xue, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam,
"Microwave photonic phase shifter based on tunable silicon-on-insulator microring resonator," in CLEO/QELS: 2010 Laser Science to Photonic Applications, 2010: IEEE, pp. 1-2.
[9] Q. Zhang, C. Yuan, and L. Liu, "Studies on mechanical tunable waveguide phase shifters for phased-array antenna applications," in 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), 2016: IEEE, pp. 1-3.
[10] C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, "Long-range LiDAR and free-space data communication with high-performance optical phased arrays," IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 5, pp. 1- 8, 2019.
[11] C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, "Coherent solid-state LIDAR with silicon photonic optical phased arrays," Optics letters, vol. 42, no. 20, pp. 4091- 4094, 2017.
[12] J. Čtyroký, J. G. Wangüemert-Pérez, P. Kwiecien, I. Richter, J. Litvik, J. H. Schmid, Í. Molina-Fernández, A. Ortega-Moñux, M. Dado, and P. Cheben, "Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides," Optics express, vol. 26, no. 1, pp. 179-194, 2018.
[13] T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, "Sparse aperiodic arrays for optical beam forming and LIDAR," Optics express, vol. 25, no. 3, pp. 2511-2528, 2017.
[14] S.-X. Chung, "Measurement and Phase correction of Optical Phase Arrays on Silicon Photonics Platform," Master, National Taiwan University of Science and Technology, 2021.
[15] J. K. Doylend, M. Heck, J. T. Bovington, J. D. Peters, L. Coldren, and J. Bowers, "Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator," Optics express, vol. 19, no. 22, pp. 21595-21604, 2011.
[16] Z. Zhang, C. Lu, and Y. Su, "A novel method to assess cotton fiber qualities based on Fraunhofer diffraction," in 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010), 2010, vol. 1: IEEE, pp. 226-228.
[17] T. M. Morgado, C. Pinho, B. Neto, F. Rodrigues, and A. Teixeira, 101

"Software Tool to Design MMI Splitters/Couplers for Photonic Integrated Circuits," in 2018 20th International Conference on Transparent Optical Networks (ICTON), 2018: IEEE, pp. 1-3.
[18] L. B. Soldano and E. C. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," Journal of lightwave technology, vol. 13, no. 4, pp. 615-627, 1995.
[19] C. P. Ho, Z. Zhao, Q. Li, S. Takagi, and M. Takenaka, "Tunable grating coupler by thermal actuation and thermo-optic effect," IEEE Photonics Technology Letters, vol. 30, no. 17, pp. 1503-1506, 2018.
[20] D. V. Simili, M. Cada, and J. Pistora, "Silicon slot waveguide electro- optic Kerr effect modulator," IEEE Photonics Technology Letters, vol. 30, no. 9, pp. 873-876, 2018.
[21] D. Zhang, F. Zhang, and S. Pan, "Grating-lobe-suppressed optical phased array with optimized element distribution," Optics Communications, vol. 419, pp. 47-52, 2018.
[22] V. Kumar and A. K. Sahoo, "Side lobe and grating lobe suppression in stepped frequency pulse train using multi-objective optimization algorithms," in 2016 International Conference on Advances in Computing, Communication, & Automation (ICACCA)(Spring), 2016: IEEE, pp. 1-6.
[23] X.-L. Ye, Y. Zeng, and X. Ding, "Grating Lobe Suppression for Wideband Large-Spacing Beam Scanning Array Using Subarray Null Adjustable Method," IEEE Antennas and Wireless Propagation Letters, 2022.
[24] J. W. Goodman, Introduction to Fourier optics. Roberts and Company publishers, 2005.
[25] W.-C. Peng, "Packaging and Characterization of 16x64 Silicon Optical Phase Arrays with Optical Switches," Master, National Taiwan University of Science and Technology, 2022.
[26] P. Cheben, A. Delage, A. Densmore, M. Florjanczyk, S. Janz, B. Lamontagne, J. Lapointe, E. Post, I. Powell, and J. Schmid, "Silicon photonic arrayed waveguide grating devices and sub-wavelength structures," in 2007 9th International Conference on Transparent Optical Networks, 2007, vol. 2: IEEE, pp. 92-95.
[27] G. Zhou, C. H. Chan, S.-W. Qu, and B. Chen, "Sub-wavelength pitch optical antenna array with low crosstalk for optical phased array," in 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China), 2022: IEEE, pp. 1-3.
102

[28] C. T. DeRose, R. Kekatpure, D. Trotter, A. Starbuck, J. Wendt, A. Yaacobi, M. Watts, U. Chettiar, N. Engheta, and P. Davids, "Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas," Optics express, vol. 21, no. 4, pp. 5198- 5208, 2013.
[29] N. Dostart, B. Zhang, A. Khilo, M. Brand, K. Al Qubaisi, D. Onural, D. Feldkhun, K. H. Wagner, and M. A. Popović, "Serpentine optical phased arrays for scalable integrated photonic lidar beam steering," Optica, vol. 7, no. 6, pp. 726-733, 2020.

無法下載圖示 全文公開日期 2025/08/10 (校內網路)
全文公開日期 2025/08/10 (校外網路)
全文公開日期 2025/08/10 (國家圖書館:臺灣博碩士論文系統)
QR CODE