簡易檢索 / 詳目顯示

研究生: 吳念穎
Nian-Ying Wu
論文名稱: 大腸直腸癌之小顆(≦8毫米)轉移性肺結節:藉由螺旋式電腦斷層影像及三維體積評估體積倍增時間和生長速率
Small (8 mm or Less) Metastatic Pulmonary Nodules in Colorectal Cancer Patients: Volume Doubling Times and Growth Rate Assessment by Using Serial CT and Three-dimensional Volumetry
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
徐先和
Hsian-He Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 81
中文關鍵詞: 大腸直腸癌之肺轉移K-meansMarching cube體積倍增時間生長速率
外文關鍵詞: Colorectal cancer, K-means, Marching cube, Volume doubling times, Growth rate
相關次數: 點閱:243下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究擬開發一套利用電腦斷層影像準確計算大腸直腸癌之小顆(≦8毫米)轉移性肺結節體積,利用前後兩次體積計算其體積倍增時間及生長速率,並提出最佳後續追蹤時間間隔。
第一部分利用影像處理技術於大腸直腸癌之小顆(≦8毫米)轉移性肺結節的電腦斷層影像上,分別定位肺結節區域及計算肺結節體積。首先經由直方圖擴展法與自適應性直方圖等化將電腦斷層影像灰階值調整至0~255並修正過亮及過暗的影像。接著進行肺部提取流程,以K-means進行分群及二値化,搭配形態學做初步肺結節定位,並以黃框標示。接著由醫師進行二次確認,將點選之肺結節影像進行血管連接判斷,血管去除後將整個肺結節像素點全部提取,並計算其中心做為下張影像之種子點,達到整顆肺結節輪廓自動化提取。最後利用等值面提取的Marching cube演算法重建及計算肺結節體積,並利用體積33 及322 的驗證樣本以不同形狀拍攝電腦斷層影像,再分別以一維、二維及本研究方法計算其體積,其平均誤差分別為2%及1%,驗證本研究所求體積可信度。
第二部分為醫學分析,將29位前後兩次大腸直腸癌之小顆轉移性肺結節體積做體積倍增時間與生長速率計算,並與一、二維量測方式所得體積及良性肺結節體積做比較,提出最佳後續追蹤時間間隔為3.2個月。


This study plans to develop a method using computed tomogra-phy (CT) to calculate the pulmonary metastasis lung nodules volume of colorectal cancer accurately. The volume doubling time and growth rate are calculated by two consecutive volumes, and the optimum subse-quent tracking time interval is proposed.
Part I uses image processing techniques to analyze the lung cancer CT to localize the lung nodules region and calculate the lung nodules volume. First, the CT gray level is adjusted by histogram expansion method and adaptive histogram equalization to 0~255. The overly bright and dark images are corrected. The lung extraction process is designed. The K-means is used for clustering and binarization, com-bined with morphological approach to obtain the lung region mask. The lung nodules region is localized, and the lung nodules location is indicated by a yellow frame for lung nodules localizing. Afterwards, the doctor makes confirmation twice. The blood vessel connection is judged according to the selected lung nodules image. All of the lung nodules pixels are extracted after the blood vessels are removed. The center is calculated as the seed of next image, so as to extract the whole lung nodules contour automatically. Finally, the Marching Cube algo-rithm of isosurface extraction is used for reconstructing the lung nod-ules volume and calculation. The CT is taken by using the known volume and the same clay in different shapes. Then the volume is cal-culated by one dimension. Two dimension and the method of this study to validate the reliability of the calculated volume, the mean error is 1%.
Part II is medical analysis. The volume doubling time and growth rate of two consecutive metastatic lung nodules volumes of colorectal cancer of 29 patients are calculated, and compared with the volumes obtained by one-dimensional and two-dimensional measurement methods and propose the optimum subsequent tracking time interval is 3.2 months of the volume of non-metastatic lung nodules.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.2.1 醫學影像 2 1.2.2 影像增強理論 3 1.2.3 影像分割理論 5 1.2.4 輪廓提取理論 6 1.3 研究目的 8 1.4 論文架構 8 第2章 醫學影像擷取系統與軟硬體介紹 11 2.1 醫學影像擷取系統 11 2.2 軟硬體介紹 13 第3章 醫學簡介 14 3.1 大腸直腸構造及功能 14 3.2 肺部構造及功能 15 3.3 癌症 15 3.3.1 大腸直腸癌 16 3.3.2 治療方式 16 3.4 肺結節介紹 17 3.4.1 種類 17 3.4.2 大小評估 19 3.4.3 後續治療 21 3.5 樣本採納條件 21 第4章 研究方法與理論 23 4.1 影像空間 23 4.2 前處理 24 4.2.1 直方圖擴展法 24 4.2.2 自適應性直方圖等化 24 4.3 影像分割 26 4.3.1 K-means演算法 27 4.3.2 形態學 29 4.3.3 Stefano法 34 4.3.4 Sobel 35 4.4 三維重建 35 4.5 醫學方法 39 4.5.1 體積倍增時間 39 4.5.2 生長速率 40 第5章 實驗結果與驗證 41 5.1 影像處理流程 41 5.1.1 前處理 42 5.1.2 肺部整體分割 44 5.1.3 肺結節輪廓分割 46 5.1.4 肺結節初步定位 47 5.1.5 自動化肺結節輪廓提取 47 5.1.6 輪廓提取比較 52 5.2 體積修正與計算 52 5.2.1 肺結節像素量修正 52 5.2.2 三維重建 53 5.2.3 體積計算 54 5.2.4 體積驗證 55 5.3 醫學分析 56 第6章 結論 62 參考文獻 64

[1] Oliveira F, Tavares J, Medical image registration: a review, Com-puter Methods in Biomechanics and Biomedical Engineering, Vol. 17, No. 2, pp. 79-93, 2014.
[2] Sotiras A, Davatzikos C, Paragios N, Deformable medical image registration: a survey, IEEE Transactions on Medical Im-aging, Vol. 32, No. 7, pp. 1153-1190, 2013.
[3] Lindsey TA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A, Global cancer statistics, 2012, CA Cancer J Clin, Vol. 65, No. 2, pp. 87-108, 2015.
[4] 105年國人死因統計結果,衛生福利。
[5] Van der Geest LG, Lam-Boer J, Koopman M, Verhoef C, Elferink MA, de Wilt JH, Nationwide trends in incidence, treatment and survival of colorectal cancer patients with synchronous metastases, Clin Exp Metastasis, Vol. 32, No. 5, pp. 457-465, 2015.
[6] Greenwood J, Maredia N, Younger J, Brown J, Nixon J, Ev-erett C, Plein S, Cardiovascular magnetic resonance and sin-gle-photon emission computed tomography for diagnosis of coro-nary heart disease (CE-MARC): a prospective trial., The Lancet, Vol. 379, No. 9814, pp. 453-460, 2012.
[7] Noble J, Ultrasound image segmentation and tissue characteri-za-tion., Proceedings of The Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 224, No. 2, pp. 307-316, 2010.
[8] Wen H, Bennett E, Hegedus M, Rapacchi S, Fourier x-ray scattering radiography yields bone structural information , Radiology, Vol. 251, No. 3, pp. 910-918, 2009.
[9] Furman HE, Feinberg MS, Badikhi D, Eyal E, Zehavi T, Degani H, Standardization of radiological evaluation of dynamic contrast en-hanced MRI: application in breast cancer diagnosis., Technology in Cancer Research and Treatment, Vol. 13, No. 5, pp. 445-454, 2014.
[10] Prasad V, Ambrosini V, Hommann M, Hoersch D, Fanti S, Baum R, Detection of unknown primary neuroendocrine tumours (CUP-NET) using 68Ga-DOTA-NOC receptor PET/CT., European Journal of Nuclear Medicine and Molecular Imaging, Vol. 37, No. 1, pp. 67-77, 2010.
[11] Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, Holland-Letz T, Hadaschik BA, Giesel F.L, Debus J, Haberkorn U, Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer., European Journal of Nuclear Medicine and Molecular Imaging, Vol. 41, No. 1, pp. 11-20, 2014.
[12] Afshar-Oromieh A, Avtzi E, Giese FL, Holland-Letz T, Linhart HG, Eder M, Eisenhut M, Boxler S, Hadaschik BA, Kratochwil C, Weichert W, Kopka K, Debus J, Haberkorn U, The diagnostic value of PET/CT imaging with the 68Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer., European Journal of Nuclear Medicine and Molecular Imaging, Vol. 42, No. 2, pp. 197-209, 2015.
[13] Sti Medical Systems, Llc, U.S. Patent No. 11, 184,046, 2010.
[14] Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, Romeny BH, Zimmerman JB, Zuiderveld K, Adaptive Histogram Equalization and Its Variations, Computer Vision, Graphics, and Image Processing, Vol. 39, No. 3, pp. 355-368, 1987.
[15] Wadud A-A , Kabir H, Dewan AA, Chae O, A Dynamic Histogram Equalization for Image Contrast Enhancement, IEEE Trans. on Consumer Electronics, Vol. 53, No. 2, pp. 593-600, 2007.
[16] Manpreet K, Jasdeep K, Jappreet K ,Survey of Contrast En-hancement Techniques based on Histogram Equalization, Interna-tional Journal of Advanced Computer Science and Applications, Vol. 2, No. 7, pp. 137-141, 2011.
[17] Agarwal TK, Tiwari M, Lamba SS, Modified Histogram Based Contrast Enhancement Using Homomorphic Filtering for Med-ical Images, IEEE International Advance Computing Conference, 2014.
[18] Wu HT, Huang J, Shi YQ, A reversible data hiding method with contrast enhancement for medical images, Journal of Visual Com-munication and Image Representation, Vol. 31, pp. 146-153, 2015.
[19] Malviya S, Amhia H, Image Enhancement Using Improved Mean Filter at Low and High Noise Density, International Journal of Emerging Engineering Research and Technology, Vol. 2, No. 3, pp. 45-52, 2014.
[20] Shoujia W, Wenhui L, Ying W, Yuanyuan J, Shan J, Ruilin Z, An Improved Difference of Gaussian Filter in Face Recognition, Journal of Multimedia, Vol. 7, No. 6, pp. 429-433, 2012.
[21] Suresh K, Papendra K, Manoj G, Ashok KN, Performance Com-parison of Median and Wiener Filter in Image De-noising, Interna-tional Journal of Computer Applications, Vol. 12, No. 4, pp. 27-31, 2010.
[22] Makandar A, Halalli B, Image Enhancement Techniques using Highpass and Lowpass Filters, International Journal of Computer Applications, Vol. 109, No. 14, pp. 11-15, 2015.
[23] Megha G, Morphological Image Processing, International Journal of Computer Science and Technology, Vol. 2, No. 4, pp. 161-165, 2011.
[24] Forgy C, Rete: a fast algorithm for the many pattern/many object pattern match problem, Artificial Intelligence, Vol. 19, No. 1, pp. 17-37, 1982.
[25] Boykov Y, Olga V, Ramin Z, Fast approximate energy mini-mization via graph cuts, IEEE Transactions on Pattern Anal-ysis and Machine Intelligence, Vol. 23, No. 11, pp. 1222-1239, 2001.
[26] Xu Z, Chen J, Wu J, Clustering algorithm for intuitionistic fuzzy sets, Information Sciences, Vol. 178, No. 19, pp. 3775-3790, 2008.
[27] Geetha Ramani R, Keerthana R, Lakshmi B, Detection of Pulmo-nary Nodules in Thoracic CT images using Image Processing and Data Mining Techniques, International Journal of Computer Ap-plications, Vol. 165, No. 7, 2017.
[28] Cid YD, del Toro OAJ, Depeursinge A, M¨uller H, Efficient and fully automatic segmenta-tion of the lungs in CT volumes, Interna-tional Symposium on Bio-medical Imaging, 2015.
[29] Kass M, Witkin A, Terzopoulos D, Snakes: active contour models, International Journal of Computer Vision, Vol. 1, No. 4, pp. 321-331, 1988.
[30] Xu C, Prince J, Snakes, shapes, and gradient vector flow, IEEE Transactions on Image Processing, Vol. 7, No. 3, pp. 359-369, 1998.
[31] Osher S, Sethian J, Fronts propagating with curvature de-pendent speed: algorithms based on the Hamilton-Jacobi formu-lation, Journal of Computational Physics, Vol. 118, No. 2, pp. 269-277, 1995.
[32] Li C, Xu C, Gui C, Fox M, Distance regularized level set evolution and its application to image segmentation,” IEEE Transactions on Image Processing, Vol. 19, No. 12, pp. 3243-3254, 2010.
[33] Chan T, Vese L, Active contours without edges, IEEE Transactions on Image Processing, Vol. 10, No. 2, pp. 266-277, 2001.
[34] Li C, Xu C, Gui C, Fox M, Distance regularized level set evolution and its application to image segmentation, IEEE Transactions on Image Processing, Vol. 19, No. 12, pp. 3243-3254, 2010.
[35] Duda RO and Hart PE, Pattern classification and scene analysis, Wiley, 1973.
[36] Jaewoong K, Sukhan L, Extracting Major Lines by Recruiting Ze-ro-Threshold Canny Edge Links along Sobel Highlights, IEEE Signal Processing Letters, Vol. 22, No. 10, pp. 1689-1692, 2015.
[37] Gioi RV, Jakubowicz J, Morel JM, Randall G, LSD: A fast line segment detector with a false detection control, IEEE Trans. Patt. Anal. Mach. Intell., Vol. 32, No. 4, pp. 722-732, 2010.
[38] 鄭寅堃, 王冰飛, 醫學影像圖像處理, 清華大學出版社, 2012.
[39] Stewart BW, Wild CP, World Cancer Report 2014, World Health Organization, 2014.
[40] Wang H, Naghavi M, Allen C et al, Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015, Lancet, Vol 388, pp. 1459-1544, 2016.
[41] Amin MB, Greene FL, Edge SB et al, The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a pop-ulation-based to a more “personalized” approach to cancer staging, CA Cancer J Clin, Vol. 67, pp. 93-99, 2017.
[42] Stephen E, David RB, Carolyn CC et al, AJCC Cancer Staging Manual 7th ed., Springer, 2010
[43] World Health Organization, WHO handbook for reporting results of cancer treatment, World Health Organization, No. 48, 1979.
[44] Eisenhauer E, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Verweij J, New response evaluation criteria in solid tu-mours: revised RECIST guideline (version 1.1), European Journal of Cancer, Vol. 45, No. 2, pp. 228-247, 2009.
[45] Therasse P, Eisenhauer EA, Verweij J, RECIST revisited: a review of validation studies on tumour assessment, European Journal of Cancer, Vol. 42, No. 8, pp. 1031-1039, 2006.
[46] Tran L, Matthew M, Goldin J, Comparison of treatment re-sponse classifications between unidimensional, bidimensional, and volu-metric measurements of metastatic lung lesions on chest CT, Aca-demic Radiology, Vol. 11, No. 12, pp. 1355-1360, 2004.
[47] Prasad S. R. and Saini S., Radiological evaluation of oncologic treatment response: current update, Cancer Imaging, Vol. 3, pp.93-95, 2003.
[48] Sohns C., Mangelsdorf J., Sossalla S., Konietschke F., Obenauer S., Measurement of response of pulmonal tumors in 64-slice MDCT, Acta Radiol, Vol. 5, pp. 512-521, 2010.
[49] Godoy MC, Naidich DP, Sub solid pulmonary nodules and the spectrum of peripheral adenocarcinomas of the lung: recommended interim guidelines for assessment and management, Radiology, Vol. 253, No. 3, pp. 606-622, 2009.
[50] MacMahon H, David P N, Jin MG, Kyung SL, Ann NCL, John RM, Atul CM, Yoshiharu O, Charles AP, Mathias P, Geoffrey DR, Cor-nelia MSP, William DT, Paul EVS, Alexander AB, Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017, Radiology, Vol. 284, No. 1, pp. 228-243, 2017.
[51] Stefano D, Simone L, Massimo F et al, Automated Segmentation Refinement of Small Lung Nodules in CT Scans by Local Shape Analysis, IEEE Trans Biomed Eng, Vol. 58, pp. 3418-3428, 2011.
[52] Lorensen WE, Cline HE, Marching cubes: a high resolution 3D surface construction algorithm, Computer Graphics (ACM), Vol. 21, No. 4, pp. 163-169, 1987.
[53] Schwartz M, A biomathematical approach to clinical lung nodules growth, Cancer 14: 1272-1294, 1961.
[54] Honda 0, Johkohb T, Sekiguchic J et al, Doubling time of lung cancer determined using three-dimensional volumetric software: Comparison of squamous cell carcinoma and adenocarcinoma, Lung Cancer, Vol. 66, pp. 211-217, 2009.
[55] Jane PK, Erika JB, Kaur M et al, Pulmonary Nodules: Growth Rate Assessment in Patients by Using Serial CT and Three-dimensional Volumetry, Radiology, Vol. 262, pp. 662-670, 2012.
[56] Wilson DO, Ryan A, Fuhrman C, Schuchert M, Shapiro S, Siegfried J, Weissfeld J, Doubling Times and CT Screen–Detected Lung Cancers in the Pittsburgh Lung Screening Study, Am J Respir Crit Care Med, Vol. 185, No. 1, pp.85-89, 2012.

無法下載圖示 全文公開日期 2023/02/13 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2023/02/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE