簡易檢索 / 詳目顯示

研究生: 楊淳宇
Chun-Yu Yang
論文名稱: 大尺度渦漩模擬在垂直軸風力發電機之應用
Large Eddy Simulation Applied on Aerodynamic Analysis of the Vertical Axis Wind Turbine
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
Cheng-Fang Chen
李基禎
Ji-Jen Lee
郭鴻森
Hong-Sen Kou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 149
中文關鍵詞: 大尺度渦漩模擬垂直軸風力發電機
外文關鍵詞: LES, VAWT
相關次數: 點閱:240下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文利用大尺度渦漩模擬(LES)建立一套無需輸入翼形氣動資料,且可做出有效預測之數值模擬模型,並以此一模型對不同參數組合之垂直軸風力發電機進行流場與氣動分析。首先參考相關文獻,確立所需之網格品質(y+)後,對NACA4412之翼形進行模擬分析,結果顯示即使在失速之後,升、阻力係數與實驗之誤差皆在20%之內。之後對一直徑為0.5m、具有三片葉片之垂直軸風力發電機進行模擬,經過對支撐臂等在模擬模型中被簡化的部份進行修正後,模擬結果皆落在實驗結果的誤差範圍內,證實所建立之數值模形能有效的對垂直軸風力發電機進行模擬預測。最後以建立的數值模型對不同葉片數、半徑與Solidity之垂直軸風力發電機進行模擬,從結果可以發現半徑為0.75公尺、葉片數為二片之風力機的輸出功率係數最高,達0.354;而半徑為0.5625、葉片數為三片之風力機,在周速比為1時,輸出扭力係數為0.021,是模擬案例中啟動能力最好的。另外,從各案例間的比較發現,Solidity為影響風力機氣動特性之主因,其值愈大則啟動能力愈好,但效率愈差;反之,Solidity值愈小,效率愈高但啟動能力卻愈差。此外,葉片數對風力機的性能也有顯著的影響,葉片數較少的風力機,輸出扭力係數或輸出功率係數會比葉片數多者為佳。


This research intends to establish an accurate simulation model to execute the CFD analysis and predict the aerodynamic performance associated with a vertical axis wind turbine (VAWT). Incorporated with LES scheme, this model can perform the flow field simulation without the input of a reliable, low-Reynolds-number aerodynamic data for airfoil, which is usually not available and required for the common-used multi-streamtube model. At first, the simulation of NACA4412 airfoil is carried out to validate this new model and to decide the appropriate quality (y+) of cell. From the numerical result, even under the stall condition, the calculated lift and drag coefficients are still agree well with experimental data within 20% error percentage. Thereafter, an H-type VAWT with three blades and a 0.5m-diameter is chosen to execute the CFD simulation. The flow patterns associated with this VAWT are successfully illustrated via the numerical outcome. Also, its aerodynamic characteristics are close to the experimental result after the supporting arms of blades is taken into account in calculating the VAWT performance. In addition, a parametric study, including blade number, radius, and solidity, is carried out with the aids of this new simulation model for realizing their corresponding influences on the VAWT performance. Under all the cases considered here, it is found that the highest power coefficient ( =0.354) and torque coefficient ( =0.021) are generated by case B (R=0.75m, 2 blades) and Case D (R=0.5625, 4 blades) operating at low rotating speed (TSR=1), respectively. Moreover, the result illustrates that solidity and blade number are two dominant parameters on aerodynamic performance of VAWT. A larger torque coefficient and a smaller power coefficient are generated for the VAWT with an increasing solidity at lower rotating speed and at higher rotating speed, respectively. It implies that a lower solidity results in a higher power output and a worse starting ability for the VAWT.

中文摘要 I 英文摘要 II 致謝 IV 目錄 V 圖索引 IX 表索引 XII 符號索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.2.1 實驗相關研究 4 1.2.2 數值模擬相關研究 7 1.3 研究目的與方法 14 1.4 本文大綱 17 第二章 風力發電機簡介 19 2.1 發展狀況 19 2.1.1 發展歷史 19 2.1.2 世界發展狀況 21 2.2 風力機種類 26 2.2.1 水平軸/垂直軸式風力發電機 27 2.2.2 升力/阻力型風力發電機 32 2.3 風力機之工作原理 35 2.3.1 貝茲動量理論 35 2.3.2 工作原理 39 2.3.3 相關參數簡介 41 第三章 數值模擬方法 45 3.1 統御方程式 45 3.2 大尺度渦漩模擬法 47 3.2.1 Filtered Navier-Stoke Equations 50 3.2.2 次尺度模型(Subgrid-Scale Model) 52 3.3 近壁面處理模式(Wall Treatments) 54 3.4 邊界條件 58 3.5 數值計算方法 60 3.5.1 離散方法 60 3.5.2 求解流程 65 3.5.3 速度與壓力耦合 68 第四章 數值模型 70 4.1 翼形模擬分析 70 4.1.1 網格品質 72 4.1.2 邊界設定 75 4.1.3 模擬結果與分析 75 4.2 風力機數值模型之建立 81 4.2.1 模型簡化與邊界設定 81 4.2.2 計算區域 83 4.2.3 模擬與實驗之結果比對 87 4.3 誤差修正 93 第五章 風力發電機個案模擬結果與分析 101 5.1 參數規劃 .101 5.2 數值模擬結果 .104 5.3 數值結果分析 .115 5.3.1 半徑不同之風力機 115 5.3.2 葉片數不同之風力機 117 5.3.3 葉片數與半徑不同之風力機 120 5.4 流場分析 .124 第六章 結論與建議 136 6.1 結論 .136 6.2 建議 .139 參考文獻 141 附錄A 145 附錄B 147 附錄C 148 作者簡介 149

[1] “Energy Technology Perspectives,” International Energy Agency, 2006.
[2] 陳正合,“風力發電之應用和效應” 台電月刊,527期,30-33頁, 2006年11月。
[3] 賴宛靖,“吹動能源新契機-談風力發電與再生能源” 台電月刊, 516期,4-11頁,2005年12月。
[4] Sandia National Laboratories Staff, ”Vertical Axis Wind Turbines-The History of the DOE Program.”
[5] Blackwell, B.F., Sullivan, W.N., Reuter, R.C., and Banas, J.F. “Engineering Development Status of the Darrieus Wind Turbine,” J.ENERGY, Vol. 1, No. 1, Jan. 1977, pp, 50-64.
[6] Blackwell, B.F., and Sheldahl, R.E., ”Selected Wind Tunnel Test Result for the Darrieus Wind Turbine,” J.ENERGY, Vol. 1, No. 6, Nov. -Dec. 1977, pp, 382-386.
[7] Sheldahl, R.E. and Bleckwell, B.F., “Free-Air Performance Test of a 5-Meter-Diameter Darrieus Turbine,” SAND77-1063, 1977.
[8] Sheldahl, R.E., Klimas, P.C., and Feltz, L.V., “Aerodynamic Performance of a 5-Meter-Diameter Darrieus Turbine with Extruded Aluminum NACA-0015 Blades,” SADN80-0179, 1980.
[9] Bergeles, G., Michos, A, and Athanassissiadis, N., “Velocity Vector and Turbulence in the Symmetry Plane of a Darrieus Wind Generator.” Journal of Wind Engineering and Industrial Aerodynamics, 1991, pp, 87-101.
[10] Kirke, B.K., “Evaluation of Self-Staring Vertical Axis Wind Turbines for Stand-Alone Applications,” Grifftth univerisity, Apr. 1998.
[11] Shibuya, S., Fujisawa, N. and Takano, T., “Visualization and PIV Measurement of Unsteady Flow around a Darrieus Wind Turbine in Dynamic Stall.” 7th International Conference on Nuclear Engineering, Tokyo, Japan, April, 1999, pp, 19-23.
[12] Fujisawa, N., and Shibuya, S., “Observations of Dynamic Stallom Darrieus Wind Turbine Blades,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, 2001, pp, 201-214.
[13] Chua, K.L., http://windturbine-analysis.netfirms.com
[14] 嚴坤政,“小型風力發電系統設置與葉片氣動力分析”,南台科技大學機械工程研究所碩士論文,2003年。
[15] Strickland, J.H. “The Darrieus Turbine: A Performance Prediction model Using Multiple Streamtubes,” SAND75-0431, 1975.
[16] Klimas, P.C. and Sheldahl, R.E., “Four Aerodynamic Prediction Schemes for Vertical-Axis Wind Turbines: A Compendium,” SAND78-0014, 1978.
[17] Johnson, D.A. and King, L.S., “A Mathematically Simple Turbulence Closure Model for Attached and Separated Turbulent Boundary Layers,” AIAA, Vol. 23, No. 11, Nov. 1985.
[18] Kaltenbach, H. J. and Choi, H., “Large Eddy Simulation of Flow around an Airfoil on a Structured Mesh,” Center for Turbulence Research Annual Research Briefs, 1995, pp, 51-60.
[19] Wolfe, W.P. and Ochs, S.S., “CFD Calculations of S809 Aerodynamic Characteristics,” AIAA-97-0973, 1997.
[20] 孫明忠,“風力發電機葉片快速設計程序與軟體設計”,長庚大學機械工程研究所碩士論文,2005年。
[21] 陳國忠,“葉片扭轉角對水平式風力機性能影響之數值研究”,臺灣科技大學機械工程研究所碩士論文,2005年。
[22] Brandt, T., “A Posteriori Study on Modeling and Numerical Error in LES Applying the Smagorinsky Model,” Complex Effects in Large Eddy Simulation Limassol, Sep. 2005.
[23] You, D. and Moin, P, “Large Eddy Simulation of Flow Separation over an Airfoil with Synthetic Jet Control,” Center for Turbulence Research Annual Research Briefs, 2006.
[24] 林恆與黃俊成,”風力發電機翼剖面過度流分析”,第十三屆全國計算流體力學學術研討會,2006年8月。
[25] 洪國泰,”小型軸流風扇設計以及模擬與實驗之整合研究”,臺灣科技大學機械工程研究所碩士論文,2007年。
[26] Sandia National Laboratories Staff, “What Is It.”
[27] www.solar-i.com/wh2.htm
[28] BTM Consult Aps, January 2004.
[29] http://en.wikipedia.org/wiki/Image:E-66_Egeln_feb2005.jpg
[30] http://en.wikipedia.org/wiki/Image:Darrieus-windmill.jpg
[31] Paraschivoiu Ion, “Wind Turbine Design with Emphasis on Darrieus Concept,” Ecole Polytechnique de Motreal, 2002.
[32] 牛山泉與三野正洋,“小型風車設計與製造”,復漢出版社。
[33] FLUENT6.1 User Guide
[34] 雷聲遠,”近代計算流體力學”,全華科技圖書股份有限公司,1996年
[35] http://www.casde.iitb.ac.in/IMSL/mav/airfoil.pdf
[36] Young, D.F., Munson, B.R., and Okiishi, T.H., “A Brief Introduction to Fluid Mechanics 2nd,” John Wiley & Sons, INC., 2000.

QR CODE