簡易檢索 / 詳目顯示

研究生: 林華偉
Hua-wei Lin
論文名稱: 光互連相關積體電路設計與實現
Design and Implementation of Integrated Circuits for Optical Interconnect
指導教授: 劉政光
Cheng-Kuang Liu
口試委員: 張嘉男
none
徐世祥
Shih-Hsiang Hsu
周肇基
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 95
中文關鍵詞: 光接收電路發光元件光檢測器轉阻放大器限幅放大器
外文關鍵詞: optical receivers, light emission device, photo detector, transimpedance amplifier, limiting amplifier
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究應用於晶片間光互連的積體電路,利用台積電(TSMC)之0.35μm SiGe 3P3M製程和0.18μm CMOS 1P6M製程來設計積體電路。文中探討三個主題,矽鍺發光與矽鍺檢光晶片、可調轉阻放大器與光接收前端電路。
第一部分探討兩個主題,使用的是台積電0.35μm SiGe 3P3M製程,第一為矽鍺發光元件的研製,採用串聯及並聯佈局結構來研究矽鍺發光晶片的發光特性,設計的PN接面矽鍺發光晶片,在並聯架構PN間距0.6μm有著最佳的發光特性。第二為矽鍺檢光晶片的設計,在紅光、綠光、藍光為光源下,以紅光接收效果最好。
第二部份為可調轉阻放大器之設計,使用的是台積電0.18μm CMOS 1P6M製程,功率消耗在1.8V供應電壓下為7.2mW,增益可調範圍30.4~40 dBΩ,在光檢測器寄生電容250fF下的-3dB頻寬為4.5GHz。
第三部分為光接收前端電路設計,使用的是台積電0.18μm CMOS 1P6M製程,電路架構包含差動式轉阻放大器以及限幅放大器,功率消耗在不含buffer的情況,1.8V供應電壓下為12.6mW,增益可調範圍75.5~86.2 dBΩ,當光檢測器寄生電容為250fF、時脈資料回復電路負載電容為100fF時,-3dB頻寬為1.5GHz。


In this thesis, a study is made of the integration circuits for the chip-to-chip optical interconnect. The integration circuits are designed using the TSMC's 0.35μm SiGe 3P3M technology and the 0.18μm CMOS 1P6M technology. There are three parts in this study, the SiGe light emission and photo detector, a tunable transimpedance amplifier, and an optical receiving front-end circuit.
In the first part, the TSMC 0.35μm SiGe 3P3M technology is adopted to study two topics. The first topic deals with the development of SiGe light-emitting chip. Series and parallel structures are used here to study the light emission property of light-emitting chip. It is found that the SiGe light-emitting chip designed with PN junctions has the best light emission power for the PN junction with a distance of 0.6μm in the parallel structure. The second topic is about the SiGe photo detector. It is found that when the red light, green light, and blue light are used as the light sources, the best performance is obtained for the red light.
In the second part, the design of a tunable transimpedance amplifier (TIA) circuit is presented using the TSMC 0.18μm CMOS 1P6M CMOS technology. The power consumption is 7.2mW from a 1.8-V supply voltage, the fabricated TIA exhibits a gain variable from 30.4 to 40 dBΩ, the -3dB bandwidth is 4.5GHz for a photodiode capacitance of 0.25pF.
The third part deals with the design of an optical receiver front-end circuit using the TSMC 0.18μm CMOS 1P6M technology. The circuit structure consists of a differential transimpedance amplifier and a limiting amplifier. Without buffer, the power consumption is 12.6mW from a 1.8-V supply voltage, the fabricated TIA-LA exhibits a gain variable from 75.5 to 86.2 dBΩ, the -3dB bandwidth of 1.5GHz for a photo detector capacitance of 0.25pF and a CDR load capacitance of 0.1pF.

第一章 緒論 1.1 前言 1.2 研究動機 1.3 內容簡介 第二章 光通訊電路基本介紹 2.1 光通訊電路接收端架構簡介 2.1.1 光檢測器 2.1.2 轉阻放大器 2.1.3 限幅放大器 2.2 相關原理簡介 2.2.1 歸零與不歸零資料 2.2.2 眼圖 2.2.3 雜訊分析 第三章 矽鍺基發光與接收機制研究與量測 3.1 矽與鍺特性簡介 3.2 發光元件簡介 3.2.1 發光元件架構與發光原理 3.2.2 半導體發光材料特性及效率 3.3 復合機制研究與分析 3.4 光檢測器概要 3.4.1 光二極體內部構造與原理 3.5 矽鍺發光晶片設計 3.5.1 電路設計架構 3.5.2 矽鍺發光晶片量測 3.6 矽鍺檢光電路量測 3.6.1 矽鍺檢光晶片設計架構與原理 3.6.2 雷射與LED為發光源的光功率量測 3.7 討論與結論 第四章 可調增益轉阻放大器設計與量測 4.1 轉阻放大器簡介 4.1.1 開迴路轉阻放大器(Open-Loop TIA) 4.1.2 回授型轉阻放大器(Feedback TIA) 4.2 可調轉阻放大器設計實作 4.2.1 設計流程 4.2.2 可調轉阻放大器架構簡介 4.2.3 Regulated Cascode (RGC)電路架構簡介 4.2.4 Inductive peaking技術簡介 4.2.5 可調轉阻放大器電路模擬 4.2.6 可調轉阻放大器量測方法與結果 4.2.7 可調轉阻放大器討論與比較 第五章 光接收前端電路設計與量測 5.1 前端電路架構簡介 5.2 限幅放大器原理與分析 5.3 前端電路設計實作 5.3.1 差動式轉阻放大器架構簡介 5.3.2 限幅放大器架構簡介 5.3.3 主動性電感 5.3.4 前端電路模擬 5.3.5 前端電路量測方法與結果 5.3.6 前端電路討論與比較 第六章 結論 6.1 總結 6.2 未來發展與展望

[1] 鄭明哲,光通信, 全華科技圖書股份有限公司, 1985年3月.
[2] 趙福光, 光電積體電路現狀及未來展望, 光電資訊, 第6期pp.43-50, June 1990.
[3] 林清富, 矽半導體發光的可能性, 光訊第93期, pp.11-17,Dec. 2001.
[4] J. C, Palais, Fiber Optic Communications, chap 7、11, 台北市,東華書局, 民國八十九年.
[5] B. Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, 2003.
[6] 徐照夫, 光感測器及其使用法, 台北市, 全華書局, 民國八十年.
[7] 劉權德, 光電用轉阻放大器研製, 碩士論文, 國立清華大學, 2001.
[8] E. Sackinger and W. C. Fischer,“A 3-GHz 32-dB CMOS limiting amplifier for SONET OC-48 receivers,” IEEE Journal of Solid-State Circuits, vol.35.12, pp.1884-1888, Dec. 2000.
[9] 劉深淵,楊清淵, 鎖相迴路, 滄海書局, 民國九十五年十一月.
[10]D. Dennis, Fiber Optic Test and Measurement, Prentice Hall, 1998.
[11]D. A. Neamen, Semiconductor Physics & Devices, McGraw -Hill, 1998.
[12]M. D. Plessis, H. Aharoni, L. W. Snyman,“Spatial and intensity modulation of light emission from a silicon LED matrix,” IEEE Photonics Technology Letters , vol.14, pp.768-770, June 2002.
[13]L. W. Snyman, A. Biber, H. Aharoni, M. D. Plessis, B. D. Patterson, P. Seinz,“Higher-efficiency Si LED's with standard CMOS technology,” EDMO, London, pp.340-345, Nov. 1997.
[14]L. W. Snyman, A. Biber, H. Aharoni, M. D. Plessis, B. D. Patterson, P. Seinz,“Practical Si LED's with standard CMOS technology,” IEEE Southeastcon 98, Proceedings, Orlando, FL, pp.344-347, April 1998.
[15]L. W. Snyman, M. D. Plessis, E. Seevinck, H. Aharoni,“An efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Letters, vol.20, no.12, pp.614-615, Dec. 1999.
[16]L. W. Snyman, A. Biber,“Enhanced light emission from a silicon n+pn CMOS structure,” IEEE Proceedings, pp.242-245, March 1999.
[17]L. W. Snyman, H. Aharoni, M. D. Plessis, J. K. Marais,“Planar silicon light emitting sources in standard 1.2 and 2 micron CMOS technology,” The 4th Pacific Rim Conference on Lasers and Electro-Optics , Chiba, vol.1, pp.108-109, July 2001.
[18]A. Chatterjee, B. Bharat,“High speed, high reliability Si-based light emitters for optical interconnects,” Proceedings of the IEEE International, pp.86-88, June 2002.
[19]繆家鼎、徐文娟、牟同升編,曹士林校訂, 光電技術, 五南圖書出版股份有限公司, 2003.9.
[20]蘇炎坤教授, 發光二極體之原理種類與應用, 國立成功大學電機研究所, 2003.
[21]蘇亭偉, 奈米結構金氧矽發光二極體之特性研究, 碩士論文,國立台灣大學, 2002.
[22]張安華, 光纖通訊與實習, 新文京開發出版股份有限公司,民國九十四年九月.
[23]呂啟銘, 10Gb/s 光纖通訊系統接收端電路模擬實作與量測, 碩士論文, 國立中央大學, 2005.
[24]S. M. Park, H.-J. Yoo,“1.25-Gb/s requlated cascode CMOS transimpedance amplifier for gigabit ethernet applications,” IEEE Journal of Solid-State Circuits, vol.39, no.1, pp.112-121, January 2004.
[25]H.-Y. Hwang, J.-C. Chien,“A CMOS tunable transimpedance amplifier,” IEEE Microwave and Wireless Components Letters, vol.16, no.12, pp.693-695, Dec. 2006.
[26]M. Li, B. Hayes-Gill and I. Harrison, “6 GHz transimpedance amplifier for optical sensing system in low-cost 0.35μm CMOS,” IEEE Electronics Letters, vol.42, no.22, pp.1278-1279, Oct. 2006.
[27]S. Galal, B. Razavi,“10-Gb/s limiting amplifier and laser/ modulator driver in 0.18-μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol.38, no.12, pp.2138-2146, Dec. 2003.
[28]S.-J. Sim, J. Park, and S. M. Park,“A 1.8V, 60dBΩ, 11GHz transimpedance amplifier with strong immunity to input parasitic capacitance,” IEEE ISCAS, pp.5483-5486, May 2006.
[29]S.-H. Kim, C.-U. Kam, J.-H. Lee,“Design of 2.5Gb/s transimpedance amplifier using CMOS technologies,” IEEE ICACT , pp.1825-1828, Feb. 2007.
[30]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[31]Y. Wang, M. Z. Khan, S. M. Ali, “A fully differential CMOS limiting amplifier with active inductor for optical receiver,” 2005 IEEE CCECE/CCGEI, Saskatoon, pp.1751-1754, May 2005.
[32]W.-Z. Chen, Y.-L. Cgeng, and D.-S. Lin, “A 1.8-V 10-Gb/s fully integrated CMOS optical receiver analog front-end,” IEEE Journal of Solid-State Circuits, vol.40, no.6, pp.1388-1396, June 2005.
[33]李源評, 矽基積體電路於晶片與晶片間光互連之研究, 碩士論文, 國立台灣科技大學, 2006.

無法下載圖示 全文公開日期 2013/07/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE