簡易檢索 / 詳目顯示

研究生: Jason Ghorman Herianto
Jason Ghorman Herianto
論文名稱: SOS Tuned NN-LSTM Inference Model For Construction Cash Flow Forecasting Considering Complexity Of The Project
SOS Tuned NN-LSTM Inference Model For Construction Cash Flow Forecasting Considering Complexity Of The Project
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 張陸滿
Luh-Maan Chang
曾惠斌
Hui-Ping Tserng
方亦卓
Yi-Cho Fang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 76
中文關鍵詞: Construction Cash Flow ForecastingSymbiotic Organisms Search Neural Network-Long Short-Term MemorySOS NN-LSTM
外文關鍵詞: Construction Cash Flow Forecasting, Symbiotic Organisms Search Neural Network-Long Short-Term Memory, SOS NN-LSTM
相關次數: 點閱:234下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Proper cash flow management demands the needs of a reliable method to forecast future cash flow. Researchers attempted to forecast the cash flow based on the previous period of cash flow, which is a time series problem, without any consideration of the characteristic of the project. Since the project diverse one another, the cash flow of the construction projects may be different. To counter this problem, Neural Network-Long Short-Term Memory (NN-LSTM) covers this time series problem by considering the complexity of the project. However, the difficulties of finding the optimal parameters of the network restrain the performance of the model. This work proposed the advancement of the model, named Symbiotic Organisms Search Neural Network-Long Short-Term Memory (SOS NN-LSTM), which utilizing Symbiotic Organisms Search (SOS) algorithm to obtain the optimal architecture of the network and train the connections attached simultaneously. Our experimental results demonstrated a promising prediction performance on forecasting the cash flow in the construction project.


    Proper cash flow management demands the needs of a reliable method to forecast future cash flow. Researchers attempted to forecast the cash flow based on the previous period of cash flow, which is a time series problem, without any consideration of the characteristic of the project. Since the project diverse one another, the cash flow of the construction projects may be different. To counter this problem, Neural Network-Long Short-Term Memory (NN-LSTM) covers this time series problem by considering the complexity of the project. However, the difficulties of finding the optimal parameters of the network restrain the performance of the model. This work proposed the advancement of the model, named Symbiotic Organisms Search Neural Network-Long Short-Term Memory (SOS NN-LSTM), which utilizing Symbiotic Organisms Search (SOS) algorithm to obtain the optimal architecture of the network and train the connections attached simultaneously. Our experimental results demonstrated a promising prediction performance on forecasting the cash flow in the construction project.

    ABSTRACT ............................................................................................................................... i ACKNOWLEDGEMENT ....................................................................................................... ii TABLE OF CONTENTS ....................................................................................................... iv ABBREVIATIONS AND SYMBOLS ................................................................................... vi LIST OF FIGURES ................................................................................................................. x LIST OF TABLES .................................................................................................................. xi CHAPTER 1: INTRODUCTION .......................................................................................... 1 1.1 Background ................................................................................................................. 1 1.2 Research objective....................................................................................................... 4 1.3 Research Scope and Assumption ................................................................................ 4 1.4 Research Methodology ................................................................................................ 5 1.5 Research Outline ......................................................................................................... 8 CHAPTER 2: LITERATURE REVIEW .............................................................................. 9 2.1 Related Works of Cash Flow Analysis ....................................................................... 9 2.2 Neural Network-Long Short Term Memory (NN-LSTM) ........................................ 10 2.2.1 NN-LSTM Network Process.............................................................................. 10 2.2.2 NN-LSTM Training Process .............................................................................. 15 2.3 Symbiotic Organisms Search (SOS) ......................................................................... 17 v CHAPTER 3: MODEL CONSTRUCTION ....................................................................... 21 3.1 Symbiotic Organisms Search Neural Network-Long Short-Term Memory ............. 21 3.2 Performance Evaluation Criteria ............................................................................... 25 CHAPTER 4: CASH FLOW INFERENCE MODEL (CFIM) EVALUATION AND IMPLEMENTATION ........................................................................................................... 28 4.1 Data Collection and Preparation ............................................................................... 28 4.2 CFIM Evaluation ....................................................................................................... 31 4.2.1 SOS NN-LSTM Experimental Result ................................................................ 31 4.2.2 Results Comparison with Other AI Techniques ................................................ 35 4.2.3 Convergence Analysis ....................................................................................... 40 4.3 CFIM Implementation ............................................................................................... 41 CHAPTER 5: CONCLUSION AND RECOMMENDATION ......................................... 46 5.1 Conclusion ................................................................................................................. 46 5.2 Recommendation ....................................................................................................... 47 REFERENCES ....................................................................................................................... 48 APPENDIX ............................................................................................................................. 56 A.1 Optimized Network Architecture .............................................................................. 56 A.2 Case Studies Results.................................................................................................. 59

    Al-Joburi, K. I., Al-Aomar, R., & Bahri, M. E. (2012). Analyzing the impact of negative cash flow on construction performance in the Dubai area. Journal of Management in Engineering, 28(4), 382-390. doi:10.1061/(ASCE)ME.1943-5479.0000123
    Alavipour, S. M. R., & Arditi, D. (2018). Optimizing Financing Cost in Construction Projects with Fixed Project Duration. Journal of Construction Engineering and Management, 144(4). doi:10.1061/(ASCE)CO.1943-7862.0001451
    Andalib, R., Hoseini, A., & Gatmiri, B. (2018). A stochastic model of cash flow forecasting considering delays in owners’ payments. Construction Management and Economics, 36(10), 545-564. doi:10.1080/01446193.2018.1433309
    Arditi, D., Koksal, A., & Kale, S. (2000). Business failures in the construction industry. Engineering, Construction and Architectural Management, 7(2), 120-132. doi:10.1108/eb021137
    Batselier, J., & Vanhoucke, M. (2017). Improving project forecast accuracy by integrating earned value management with exponential smoothing and reference class forecasting. International Journal of Project Management, 35(1), 28-43. doi:10.1016/j.ijproman.2016.10.003
    Benardos, P. G., & Vosniakos, G. C. (2007). Optimizing feedforward artificial neural network architecture. Engineering Applications of Artificial Intelligence, 20(3), 365-382. doi:10.1016/j.engappai.2006.06.005
    49
    Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning Long-Term Dependencies with Gradient Descent is Difficult. IEEE Transactions on Neural Networks, 5(2), 157-166. doi:10.1109/72.279181
    Blanco, A., Delgado, M., & Pegalajar, M. C. (2001). A real-coded genetic algorithm for training recurrent neural networks. Neural Networks, 14(1), 93-105. doi:https://doi.org/10.1016/S0893-6080(00)00081-2
    Boussabaine, A. H., & Elhag, T. (1999). Applying fuzzy techniques to cash flow analysis. Construction Management and Economics, 17(6), 745-755. doi:10.1080/014461999371088
    Boussabaine, A. H., & Kaka, A. P. (1998). A neural networks approach for cost flow forecasting. Construction Management and Economics, 16(4), 471-479. doi:10.1080/014461998372240
    Cheng, M. Y., Hoang, N. D., & Wu, Y. W. (2015). Cash flow prediction for construction project using a novel adaptive time-dependent least squares support vector machine inference model. Journal of Civil Engineering and Management, 21(6), 679-688. doi:10.3846/13923730.2014.893906
    Cheng, M. Y., & Prayogo, D. (2014). Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Computers and Structures, 139, 98-112. doi:10.1016/j.compstruc.2014.03.007
    Cheng, M. Y., & Prayogo, D. (2016). Modeling the permanent deformation behavior of asphalt mixtures using a novel hybrid computational intelligence. Paper presented at the ISARC 2016 - 33rd International Symposium on Automation and Robotics in Construction.
    50
    Cheng, M. Y., & Roy, A. F. V. (2011). Evolutionary fuzzy decision model for cash flow prediction using time-dependent support vector machines. International Journal of Project Management, 29(1), 56-65. doi:10.1016/j.ijproman.2010.01.004
    Cheng, M. Y., Tsai, H. C., & Liu, C. L. (2009). Artificial intelligence approaches to achieve strategic control over project cash flows. Automation in Construction, 18(4), 386-393. doi:https://doi.org/10.1016/j.autcon.2008.10.005
    Cheng, M. Y., & Wu, Y. W. (2009). Evolutionary support vector machine inference system for construction management. Automation in Construction, 18(5), 597-604. doi:https://doi.org/10.1016/j.autcon.2008.12.002
    Cui, Q., Hastak, M., & Halpin, D. (2010). Systems analysis of project cash flow management strategies. Construction Management and Economics, 28(4), 361-376. doi:10.1080/01446191003702484
    El-Abbasy, M. S., Zayed, T., & Elazouni, A. (2012). Finance-based scheduling for multiple projects with multimode activities. Paper presented at the Construction Research Congress 2012: Construction Challenges in a Flat World, Proceedings of the 2012 Construction Research Congress.
    Ezugwu, A. E., & Adewumi, A. O. (2017). Soft sets based symbiotic organisms search algorithm for resource discovery in cloud computing environment. Future Generation Computer Systems, 76, 33-50. doi:10.1016/j.future.2017.05.024
    Ezugwu, A. E., & Prayogo, D. (2019). Symbiotic Organisms Search Algorithm: theory, recent advances and applications. Expert Systems with Applications, 119, 184-209. doi:10.1016/j.eswa.2018.10.045
    51
    Faris, H., Aljarah, I., & Mirjalili, S. (2016). Training feedforward neural networks using multi-verse optimizer for binary classification problems. Applied Intelligence, 45(2), 322-332. doi:10.1007/s10489-016-0767-1
    Fister Jr, I., Yang, X. S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, 13, 34-46. doi:10.1016/j.swevo.2013.06.001
    Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10), 2451-2471. doi:10.1162/089976600300015015
    Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2003). Learning precise timing with LSTM recurrent networks. Journal of Machine Learning Research, 3(1), 115-143. doi:10.1162/153244303768966139
    Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning: Addison-Wesley Publishing Company, Inc.
    Hagan, M. T., Demuth, H. B., Beale, M. H., & Jesus, O. D. (1996). Neural Network Design (2 ed.). Boston: MA: PWS Publishing.
    Harmon, K. M. J. (2003). Conflicts between owner and contractors: Proposed intervention process. Journal of Management in Engineering, 19(3), 121-125. doi:10.1061/(ASCE)0742-597X(2003)19:3(121)
    Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735
    Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A pracical guide to support vector classification. Technical Report.
    52
    Hwee, N. G., & Tiong, R. L. K. (2002). Model on cash flow forecasting and risk analysis for contracting firms. International Journal of Project Management, 20(5), 351-363. doi:10.1016/S0263-7863(01)00037-0
    Jarrah, R., Kulkarni, D., & O'Connor, J. T. (2007). Cash flow projections for selected TxDoT highway projects. Journal of Construction Engineering and Management, 133(3), 235-241. doi:10.1061/(ASCE)0733-9364(2007)133:3(235)
    Jiang, A., Issa, R. R. A., & Malek, M. (2011). Construction project cash flow planning using the pareto optimality efficiency network model. Journal of Civil Engineering and Management, 17(4), 510-519. doi:10.3846/13923730.2011.604537
    Jiang, M., Luo, Y. P., & Yang, S. Y. (2007). Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letters, 102(1), 8-16. doi:https://doi.org/10.1016/j.ipl.2006.10.005
    Kaka, A. P., & Price, A. D. F. (1991). Net cashflow models: Are they reliable? Construction Management and Economics, 9(3), 291-308. doi:10.1080/01446199100000023
    Khosrowshahi, F. (1998). A Visual Approach to the Analysis of Curve Profile: A Case in Construction Industry. Paper presented at the Proceedings of the International Conference on Information Visualisation.
    Khosrowshahi, F., & Kaka, A. P. (2007). A decision support model for construction cash flow management. Computer-Aided Civil and Infrastructure Engineering, 22(7), 527-539. doi:10.1111/j.1467-8667.2007.00508.x
    Korir, D. C. (2017). Novel deep learning approach for schedule estimate to completion in construction project using NN-LSTM. National Taiwan University of Science and Technology.
    53
    Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539
    Liu, Y., Zayed, T., & Li, S. (2009). Cash flow analysis of construction projects. Paper presented at the Construction Specialty Conference (CSCE), St. John's, Newfoundland and Labrador.
    Lokmic, L., & Smith, K. A. (2000). Cash flow forecasting using supervised and unsupervised neural networks. Paper presented at the Proceedings of the International Joint Conference on Neural Networks.
    Nam, H., Han, S. H., & Kim, H. (2007). Time series analysis of construction Cost Index using wavelet transformation and a neural network. Paper presented at the Automation and Robotics in Construction - Proceedings of the 24th International Symposium on Automation and Robotics in Construction.
    Navon, R. (1995). Resource-based model for automatic cash-flow forecasting. Construction Management and Economics, 13(6), 501-510. doi:10.1080/01446199500000058
    Odeyinka, H. A., Lowe, J., & Kaka, A. (2008). An evaluation of risk factors impacting construction cash flow forecast. Journal of Financial Management of Property and Construction, 13(1), 5-17. doi:10.1108/13664380810882048
    Odeyinka, H. A., Lowe, J., & Kaka, A. P. (2013). Artificial neural network cost flow risk assessment model. Construction Management and Economics, 31(5), 423-439. doi:10.1080/01446193.2013.802363
    Osman, I. H., & Laporte, G. (1996). Metaheuristics: A bibliography. Annals of Operations Research, 63(5), 511-623.
    54
    Robinson, A. J., & Fallside, F. (1987). The Utility Driven Dynamic Error Propagation Network: University of Cambridge Department of Engineering.
    Russell, J. S. (1991). Contractor failure: Analysis. Journal of Performance of Constructed Facilities, 5(3), 163-180. doi:10.1061/(ASCE)0887-3828(1991)5:3(163)
    Shash, A. A., & Qarra, A. A. (2018). Cash Flow Management of Construction Projects in Saudi Arabia. Project Management Journal, 49(5), 48-63. doi:10.1177/8756972818787976
    Siddique, M. N. H., & Tokhi, M. O. (2001). Training neural networks: Backpropagation vs genetic algorithms. Paper presented at the Proceedings of the International Joint Conference on Neural Networks.
    Singh, S., & Lokanathan, G. (1992). Computer-based cash flow model. Paper presented at the Transactions of the American Association of Cost Engineers.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929-1958.
    Stepniewski, S. W., & Keane, A. J. (1996) Topology design of feedforward neural networks by genetic algorithms. Vol. 1141. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 771-780).
    Tashkova, K., Šilc, J., Atanasova, N., & Džeroski, S. (2012). Parameter estimation in a nonlinear dynamic model of an aquatic ecosystem with meta-heuristic optimization. Ecological Modelling, 226, 36-61. doi:10.1016/j.ecolmodel.2011.11.029
    55
    Touran, A., Atgun, M., & Bhurisith, I. (2004). Analysis of the United States Department of Transportation prompt pay provisions. Journal of Construction Engineering and Management, 130(5), 719-725. doi:10.1061/(ASCE)0733-9364(2004)130:5(719)
    Werbos, P. J. (1990). Backpropagation Through Time: What It Does and How to Do It. Proceedings of the IEEE, 78(10), 1550-1560. doi:10.1109/5.58337
    Wu, H., Zhou, Y., Luo, Q., & Basset, M. A. (2016). Training feedforward neural networks using symbiotic organisms search algorithm. Computational Intelligence and Neuroscience, 2016. doi:10.1155/2016/9063065
    Zayed, T., & Liu, Y. (2014). Cash flow modeling for Construction projects. Engineering, Construction and Architectural Management, 21(2), 170-189. doi:10.1108/ECAM-08-2012-0082

    無法下載圖示 全文公開日期 2024/01/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE