簡易檢索 / 詳目顯示

研究生: 李育珊
Yu-shan Li
論文名稱: 無線感測網路對於合作連續偵測之網路內處理
In-network Processing for Collaborative Sequential Detection in Wireless Sensor Networks
指導教授: 金台齡
Tai-lin Chin
口試委員: 花凱龍
Kai-lung Hua
項天瑞
Tien-ruey Hsiang
鍾偉和
Wei-ho Chung
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 50
中文關鍵詞: 無線感測網路合作連續偵測資料融合網路內處理偵測延遲
外文關鍵詞: Wireless sensor networks, Collaborative sequential detection, Data fusion, In-network processing, Detection latency
相關次數: 點閱:259下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

無線感測網路近年來被廣泛地應用於安全、環境監控與目標追蹤及偵測,進而去獲取週遭環境資訊與執行數據計算。針對入侵者或目標物偵測此一應用,如何有效率地進行即時性偵測,以及妥善利用感測節點之能量,對於目標物偵測應用是個很重要的議題。在過去許多偵測研究,大多是使用單一感測節點進行目標物偵測,並且僅使用單一位元的偵測結果作為最後判斷依據,雖然該方法簡單容易實作,然而,容易受到環境中的雜訊干擾,使得判斷錯誤的機率提高,降低目標物偵測的效能。因此,本篇論文利用多個感測節點來進行合作連續偵測,這樣的偵測機制適應於雜訊干擾存在,以及訊號會隨著距離衰減之情況,提供了比單一感測節點更加可靠的偵測機制。在本篇論文中,我們提出了三個基於資料融合,且採用網路內處理之合作連續偵測方法,分別為加總運算之數值融合偵測(Value fusion by summation)、概似比值累乘運算之數值融合偵測(Value fusion by likelihood ratio product)以及概似比值累乘運算之決策融合偵測(Decision fusion by likelihood ratio product)。資料融合主要將各個感測節點偵測到的資料智能合成,提供比單一感測節點更加準確的判斷依據,提升偵測之效能。其中,將各偵測資料智能化合成之計算,分別於各個感測節點進行之,即網路內處理,如同資料聚集技術,藉此降低能源之消耗。我們的實驗結果顯示基於數值融合可以達到較短的偵測延遲時間,且使用概似比值累乘運算之網路內處理之偵測效能較佳。除此之外,採用網路內處理比未採用大幅地降低了感測節點傳輸上之能源消耗。


Recently, wireless sensor networks (WSNs) are extensively utilized in security surveillance, environmental monitoring and target tracking/detection. WSNs are used to monitor the physical environment and perform tasks for a variety of purposes. In target detection, two important issues are to perform detection efficiently and reduce energy consumption in transmission. Most of past studies adopted a disc model to target detection and use only 1-bit to represent the detection made by the system. Although using the trivial detection strategy is easy to implement, the detection performance may be decreased due to high false alarm probability caused by noise. In this paper, we propose a collaborative sequential detection with multiple sensors. The detection strategy is applied to the environment where noise and signal attenuation coexists. Three collaborative sequential detection methods are presented. These methods are based on value fusion by summation, value fusion by likelihood ratio product, and decision fusion by likelihood ratio product. In particular, data fusion can integrate multiple detection data, and provide an accurate and useful decision result to ensure the overall performance. By using the technology of in-network processing, sensor measurements are processed along the route to the sink and successfully reduces energy consumption of network. Simulation result shows that the integration of value fusion and in-network processing with likelihood ratio product achieves better performance. Furthermore, using in-network processing, our research reduces the energy consumption in transmission among sensors.

第一章 緒論 1.1 前言 1.2 研究動機與目標 1.3 研究方法 1.4 本文貢獻 1.5 各章提要 第二章 文獻探討 2.1 相關偵測研究 2.2 相關網路內處理研究 第三章 網路內處理之合作連續偵測 3.1 訊號模型與測量 3.2 使用於合作連續偵測之相關概念 3.2.1 資料融合模型之概念 3.2.2 合作連續偵測之流程 3.2.3 網路內處理之概念與流程 3.3 合作連續偵測 3.3.1 加總運算之數值融合偵測 3.3.2 概似比值累乘運算之數值融合偵測 3.3.3 概似比值累乘運算之決策融合偵測 第四章 模擬與效能評估 4.1 模擬環境及參數設定 4.2 能量消耗模型 4.3 平均偵測延遲之模擬值與分析值之比較 4.4 網路內處理對能源消耗之影響 4.5 錯誤機率與偵測延遲時間之影響 第五章 結論與未來展望 參考文獻

[1] Y. Zou and K. Chakrabarty, “Sensor Deployment and Target Localization in Distributed Sensor Networks,” in ACM Transactions on Embedded Computing Systems, vol. 3, pp. 61-91, Feb. 2004.
[2] T. He, P. Vicaire, T. Yan, L. Luo, L. Gu, G. Zhou, R. Stoleru, Q. Cao, J. A. Stankovic and T. Abdelzaher, “Achieving Real-time Target Tracking using Wireless Sensor Networks,” in Proc. IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 37-48, Apr. 2006.
[3] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring and D. Estrin, “Habitat Monitoring with Sensor Networks,” in ACM Wireless Sensor Network, vol. 47, no. 6, pp. 34-40, Jun. 2004.
[4] S. Kumar, F. Zhao, and D.Shepherd, “Collaborative Signal and Information Processing in Microsensor Networks,” in IEEE Signal Processing Magazine, vol. 19, pp. 13-14, Mar. 2002.
[5] P. K. Varshney, Distributed Detection and Data Fusion, Springer, New York, NY, USA, 1997.
[6] O. Dousse, C. Tavoularis and P. Thiran, “Delay of Intrusion Detection in Wireless Sensor Networks,” in Proc. Mobile Ad Hoc Networking and Computing, pp. 155-165, May 2006.
[7] Q. Cao, T. Yan, J. Stankovic and T. Abdelzaher, “Analysis of Target Detection Performance for Wireless Sensor Networks,” in Distributed Computing in Sensor Systems, pp. 276-292, 2005.
[8] G. Xing, R. Tan, B. Liu, J. Wang, X. Jia and C. Yi, “Data Fusion Improves the Coverage of Wireless Sensor Networks,” in Proc. Mobile Computing and Networking, pp. 157-168, Sep. 2009.
[9] R. Tan, G. Xing, B. Liu and J. Wang, “Impact of Data Fusion on Real-Time Detection in Sensor Networks,” in Proc. IEEE Real-Time Systems Symposium, vol. 56, pp. 323-332, Dec. 2009.
[10] N. Katenka, E. Levina and G. Michailidis, “Local Vote Decision Fusion for Target Detection in Wireless Sensor Networks,” in IEEE Transactions on Signal Processing, vol. 56, no. 1, pp. 329-338, Jan. 2008.
[11] R. Niu and P. K. Varshney, “Distributed Detection and Fusion in a Large Wireless Sensor Network of Random Size,” EURASIP Journal on Wireless Communications and Networking, vol. 2005, no. 4, pp. 462-472, Sep. 2005.
[12] L. Yu and A. Ephremides, “Detection Performance and Energy Efficiency of Sequential Detection in a Sensor Network,” in Proc. Hawaii International Conference on System Sciences, vol. 9, Jan. 2006.
[13] L. Yu, L. Yuan, G. Qu and A. Ephremides, “Energy-Driven Detection Scheme with Guaranteed Accuracy,” in Proc. Information Processing in Sensor Networks, pp. 284-291, 2006.
[14] A. G. Dimakis, A. D. Sarwate and M. J. Wainwrightm, “Geographic Gossip Efficient Aggregation for Sensor Networks,” in Proc. Information Processing in Sensor Networks, Apr. 2006.
[15] C. Hua and T. -S. P. Yum, “Optimal Routing and Data Aggregation for Maximizing Lifetime of Wireless Sensor Networks,” in IEEE/ACM Transactions on Networking, vol. 16, no. 4, pp. 892-903, Aug. 2008.
[16] K. Kalpakis and S. Tang, “A Combinatorial Algorithm for the Maximum Lifetime Data Gathering with Aggregation Problem in Sensor Networks,” in Computer Communications, vol. 32, no. 15, pp. 1655-1665, Sep. 2009.
[17] X. Tang and J. Xu, “Optimizing Lifetime for Continuous Data Aggregation with Precision Guarantees in Wireless Sensor Networks,” in IEEE/ACM Transactions on Networking, vol. 16, no. 4, pp. 904-917, Aug. 2008.
[18] S. C.-H Huang, P. Wan, C. T. Vu, Y. Li and F. Yao, “Nearly Constant Approximation for Data Aggregation Scheduling in Wireless Sensor Networks,” in Proc. IEEE International Conference on Computer Communications, pp. 366-372, May 2007.
[19] B. Yu, J. Li and Y. Li, “Distributed Data Aggregation Scheduling in Wireless Sensor Networks,” in Proc. IEEE International Conference on Computer Communications, pp. 2159-2167, Apr. 2009.
[20] B. Karp and H. Kung, “GPRS: Greedy Perimeter Stateless Routing for Wireless Networks,” in Proc. Mobile computing and networking, pp.243-254, Aug. 2000.
[21] P. W. Chen, “Detection Latency and Sensor Deployment Based on Collaborative Sequential Detection in Wireless Sensor Networks,” master dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan, 2011.
[22] W. C. Chuang, “Decision Fusion Based Sequential Detection in Wireless Sensor Networks,” master dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan, 2012.

QR CODE