簡易檢索 / 詳目顯示

研究生: 鄭俊義
Chun-Yi Cheng
論文名稱: 紫膜生物光電晶片於牙斑菌檢測之應用
Preparation of purple membrane-based photoelectric chips for Streptococcus mutans detection
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 曾文祺
Wen-Chi Tseng
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 104
中文關鍵詞: 牙斑菌紫膜
外文關鍵詞: Streptococcus mutans, purple membrane
相關次數: 點閱:207下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

古生嗜鹽菌Halobacterium salinarum 具有一種名為紫膜(purple membrane, PM)的細胞膜,內含細菌視紫質(bacteriorhodopsin, BR)光敏感蛋白,其受光激發後會產生膜內外質子濃度差,可用以生產光電流。利用微生物會散射光與PM光電流強度與入射光強度呈線性關係之事實,本論文開發具有高靈敏度可定量檢測Streptococcus mutans牙斑菌PM生物感測晶片。本研究分別以protein A定向化之S. mutans抗體與對S. mutans具專一性且以化學鍵結固定化之核酸適體為辨識分子固定化於PM晶片上,製作出兩種PM複合感測晶片,並比較在靜態以及微流道內對S. mutans的檢測結果。除了觀察晶片光電流訊號變化外,並同步以螢光顯微鏡確認菌體有被捕捉在晶片上。於靜態檢測時,抗體-PM複合晶片對S. mutans的檢測靈敏度可低至10 CFU/mL;核酸適體-PM複合晶片的檢測靈敏度則更可至1 CFU/mL,兩者的檢測範圍均至少可達106 CFU/mL。比較靜態檢測與微流道內即時檢測,於高菌體濃度時,兩種檢測方式有同樣效果;然而於低菌濃度時,流道內即時檢測之方式則會因菌體易吸附在管壁上而效果降低。


Halobacterium salinarum contains purple membranes (PM) constituted of a light-sensitive protein, bacteriorhodopsin, which generates a proton gradient across the membrane upon illumination. Therefore, PM can be used to produce photocurrents. Based on the light scattering ability of bacteria and the linear correlation between PM photocurrents and illumination intensities, this study demonstrated a sensitive PM-based biochip to quantitatively detect Streptococcus mutans. Two kinds of biochips were developed, each fabricated with different recognition molecules on PM-coated chips, covalently conjugated S. mutans-specific aptamers and anti-S. mutans antibodies orientationally immobilized through covalently linked protein A. Both microfluidic real-time and static detections of S. mutans using either chip were demonstrated and the detections were evidenced by both fluorescence microscopy and photocurrent reduction analyses of the cell-bound chips. For the static detection, the antibody-PM composite chip exhibited the sensitivity of 10 CFU/mL, while the aptamer-PM one had the sensitivity further down to 1 CFU/mL. Both chips could detect 106 CFU/mL cultures in a single step without prior dilution. S. mutans cultures at high concentrations were real-time detected in the microfluidic device as accurately and effectively as in a cuvette, while the detection of very low-populated cultures by microfluidics was poor due to cell adsorption on microfluidic device and tubing surfaces.

目錄 中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VIII 第一章 緒論 1 第二章 文獻回顧 2 2-1 Streptococcus mutans 與檢測方式 2 2-2 抗體與protein A 3 2-3 核酸適體發展:篩選與生物感測應用 4 2-4 細菌視紫質(BR) 6 2-4-1 BR結構 7 2-4-2 BR 光循環與質子傳遞 8 2-4-3 BR 光電響應 9 2-5 微流體技術介紹 10 第三章 實驗 13 3-1 實驗目的 13 3-2 實驗設備 13 3-3 實驗流程 15 3-4 量測 16 3-4-1 微分光電流量測 16 3-4-2 微流體即時菌液監測 17 3-4-3 下照式顯微鏡操作(Olympus IX73):螢光與白光 18 第四章 結果討論 19 4-1 核酸適體結構模擬 19 4-1-1以模擬決定核酸適體固定化反應條件 19 4-1-2 以模擬決定晶片檢測菌條件 40 4-2 以實驗決定核酸適體固定化條件與測菌條件 44 4-3 以抗體為辨識分子之抗體-PM複合晶片檢測S. mutans之檢量線 49 4-4 微流道設計與測試 54 4-4-1 以3D列印技術製作微流道 54 4-4-2 不同檢測系統之PM晶片光電流訊號之變化 56 4-5 核酸適體複合晶片對S. mutans之靜態與即時檢測 60 4-5-1 即時檢測實驗流程與結果 60 4-5-2 S. mutans核酸適體晶片靜態與即時檢測之檢量線比較 69 4-6 S. mutans核酸適體-PM複合晶片專一性探討 73 第五章 結論與建議 78 第六章 參考資料 81

吳欣穎, 細菌視紫質泛用型免疫光電晶片製備與原子力顯微鏡分析, 國立台灣科技大學化學工程研究所碩士論文 2015

陳冠辰, 適體-細菌視紫質生物光電感測晶片之探討, 國立台灣科技大學化學工程研究所碩士論文 2015

廖信詮, 微流體於細菌視紫質光電晶片製備之應用, 國立台灣科技大學化學工程研究所碩士論文 2015

林鼎勝, 3D列印的發展現況. 科學發展, 科技部, 台北市 2014, 503, 32-37

刘开云, 邹全明, 郭刚, 张卫军, 孙红武, 付欢, 付, 程子洋, 樊绍文, 卢陆, Double polymerase chain reaction (PCR) rapid detection method of Streptococcus mutans, CN103060442A 2013

Barbulovic-Nad, I.; Lucente, M.; Sun, Y.; Zhang, M.; Wheeler, A. R.; Bussmann, M. Bio-microarray fabrication techniques—a review. Critical reviews in biotechnology 2006, 26, 237-259.

Comina, G.; Suska, A.; Filippini, D. Low cost lab-on-a-chip prototyping with a consumer grade 3D printer. Lab on a Chip 2014, 14, 2978-2982.

Gold, O. G.; Jordan, H.; Van Houte, J. A selective medium for Streptococcus mutans. Archives of Oral Biology 1973, 18, 1357-1364.

Graille, M.; Stura, E. A.; Corper, A. L.; Sutton, B. J.; Taussig, M. J.; Charbonnier, J. B.; Silverman, G. J. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: Structural basis for recognition of B-cell receptors and superantigen activity. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, 5399-5404.

Hamada, S.; Slade, H. D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiological reviews 1980,44, 331.

Hampp, N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chemical Reviews 2000, 100, 1755-1776.

Hong, F. T. Molecular sensors based on the photoelectric effect of bacteriorhodopsin: origin of differential responsivity. Materials Science and Engineering 1997, C4, 267-285.

Jakeway, S. C.; de Mello, A. J.; Russell, E. L. Miniaturized total analysis systems for biological analysis. Fresenius Journal of Analytical Chemistry 2000, 366, 525-539

Khorana, H. G. Bacteriorhodopsin, a membrane protein that uses light to translocate protons. Journal of Biological Chemistry 1988, 263, 7439-7442.

Lu, H. C.; Chen, H. M.; Lin, Y. S.; Lin, J. W. A reusable and specific protein A-coated piezoelectric biosensor for flow injection immunoassay. Biotechnology Progress 2000, 16, 116-124.

Manz, A.; Graber, N.; Widmer, H. Á. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B: Chemical 1990, 1, 244-248.

Nakano, K.; Inaba, H.; Nomura, R.; Nemoto, H.; Takeda, M.; Yoshioka, H.; Matsue, H.; Takahashi, T.; Taniguchi, K.; Amano, A.; Ooshima, T. Detection of cariogenic Streptococcus mutans in extirpated heart valve and atheromatous plaque specimens. Journal of clinical microbiology 2006, 44: 3313-3317.

Ozer, A.; Pagano, J. M.; Lis, J. T. New technologies provide quantum changes in the scale, speed, and success of SELEX methods and aptamer characterization. Molecular Therapy Nucleic Acids 2014, 3, e183.

Richman, D. D.; Cleveland, P. H.; Oxman, M. N.; Johnson, K. M. The binding of Staphylococcal protein A by the sera of different animal species. The Journal of Immunology 1982, 128, 2300-2305.

Savageau, M. A. Biochemical systems analysis. A study of function and design in molecular biology. Addison-Wesley Publishing Co., Reading, MA. 1976.

Savory, N.; Takahashi, Y.; Tsukakoshi, K.;Hasegawa, H.;Takase, M.; Abe, K.; Yoshida, W.; Ferri, S.; Kumazawa, S.;Sode, K. Simultaneous improvement of specificity and affinity of aptamers against Streptococcus mutans by in silico maturation for biosensor development. Biotechnology and Bioengineering 2014, 111, 454-461.

Sato, K.; Hibara, A.; Tokeshi, M.; Hisamoto, H.; Kitamori, T. Microchip-based chemical and biochemical analysis systems. Advanced Drug Delivery Reviews 2003, 55, 379-391

Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-based biosensors. Trends in Analytical Chemistry 2008, 27, 108-117

Song, K. M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors (Basel) 2012, 12, 612-631.

Tami, J.; Parr, M.; Brown S.; Thompson, J. Monoclonal antibody technology. American Journal of Health-System Pharmacy 1986, 43, 2816-2825.

Wang, J. P.; Yoo, S. K.; Song, L.; El-Sayed, M. A. Molecular mechanism of the differential photoelectric response of bacteriorhodopsin. The Journal of Physical Chemistry B 1997, 101, 3420-3423.

Weibel, D. B.; Whitesides, G. M. Applications of microfluidics in chemical biology. Current Opinion in Chemical Biology 2006, 10, 584-591.
Witt, M.; Walter, J. G.; Stahl, F. Aptamer microarrays-current status and future prospects. Microarrays 2015, 4, 115-132.

Woof, J. M.; Burton, D. R. Human antibody-Fc receptor interactions illuminated by crystal structures. Nature Reviews Immunology 2004, 4, 89-99.

無法下載圖示 全文公開日期 2021/08/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE