簡易檢索 / 詳目顯示

研究生: 張琮偉
Tsung-Wei Chang
論文名稱: 硒化鋅鈹錳(ZnBeMnSe)光學特性之研究
Optical Characterization of ZnBeMnSe Mixed Crystal
指導教授: 黃鶯聲
Ying-sheng Huang
口試委員: 陳永芳
none
程光蛟
none
孫澄源
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 75
中文關鍵詞: 硒化鋅鈹錳(ZnBeMnSe)光學特性之研究
外文關鍵詞: Optical Characterization of ZnBeMnSe Mixed Cryst
相關次數: 點閱:169下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要利用無接點電場調制反射(CER)、光激發螢光光譜(PL)、以及表面光電壓(SPS)等量測技術,研究隨溫度變化之稀量磁性半導體 (Diluted magnetic semiconductor)之Ⅱ-Ⅵ族四元化合物ZnBeMnSe的一系列樣品的光學特性。
本論文中所探討的樣品均是利用高壓布里奇曼法 (High-pressure Bridgman method)成長而成,其錳的成分範圍為5%~20%。首先利用表面光電壓技術在室溫下檢測其樣品的表面狀態。而PL光譜在低溫下,可觀察到激子躍遷訊號、施體受體對以及錳正二價離子在陽離子晶格中從4T1 (4G) 至 6A1 (6S) 的發光訊號。此外,CER光譜清楚顯示能隙附近的躍遷訊號。藉由這三種量測,以CER量測譜線在線型吻合後所得到的結果而決定出能隙躍遷訊號。再比較PL的峰值訊號和SPS的譜線所得到的躍遷訊號後發現是相當吻合。根據溫度變化所得到的躍遷訊號和展寬係數,皆有討論。


This paper deals with the investigation of temperature dependence of the near band-edge transitions of a series of diluted magnetic semiconductor Zn0.95-xBe0.05MnxSe mixed crystals using contactless electroreflectance (CER) , photoreflectance (PR) and photoluminescence(PL) and Surface Photovoltage Spectroscopy (SPS) in the temperature range of 15 to 400 K. The crystals were grown by the modified high pressure Bridgman method from the melt for 0.05 < x < 0.2. Room-temperature SPS has been used as a diagnostic technique for checking the surface condition of the sample. Typical PL spectrum at low temperature consists of free exciton line, an edge emission due to recombination of shallow donor-acceptor pairs, and the emission transition 4T1 (4G) →6A1 (6S) in Mn2+ ion at cation lattice site. The CER spectrum reflects the energetic distribution of states. So the near band edge transition energies are determined by analyzing the CER spectra. The peak positions of the exciton emission lines in the PL spectra correspond quite well to the energies of the fundamental transition determined by SPS and CER data. The parameters that describe the temperature dependence of the transition energy and broadening parameter of the fundamental band-edge exciton have been evaluated and discussed.

中文摘要 --------------------------------------------Ⅰ 英文摘要 --------------------------------------------Ⅱ 致謝-------------------------------------------------Ⅲ 目錄-------------------------------------------------Ⅳ 圖索引表---------------------------------------------Ⅵ 表索引-----------------------------------------------Ⅸ 第一章 緒論----------------------------------------1 1-1 研究背景-----------------------------------1 1-2 研究主題和方法-----------------------------2 第二章 硒化鋅鈹錳(Zn0.95-XBe0.05MnxSe)半導體簡介--------7 2-1 硒化鋅鈹錳(Zn0.95-XBe0.05MnxSe)半導體簡介--------7 2-2 硒化鋅鈹錳(Zn0.95-XBe0.05MnxSe)半導體成長與製備-8 第三章 量測理論及技術------------------------------9 3-1 光激發螢光---------------------------------9 3-1-1 光激發螢光系統和量測方法概述-------13 3-2 表面光電壓---------------------------------15 3-2-1 表面光電壓原理--------------------15 3-2-1-1 表面電子結構-------------15 3-2-1-2 表面光電子效應----------16 3-2-2 表面光電壓實驗方法--------------18 3-2-3 表面光電壓實驗架構--------------18 3-3 調製光譜----------------------------------25 3-3-1 前言--------------------------------25 3-3-2 物理量與介電係數的關係--------------27 3-3-2-1 反射率和介電函數的關係------27 3-3-2-2 未束縛態電場反射調製光譜----28 3-3-3 調製光譜系統概論--------------------31 3-3-4 調製光譜技術概論--------------------35 3-3-4-1 光子反射調製(PR)------------35 3-3-4-2 無接點電場反射調製(CER)------36 第四章 結果與討論--------------------------------39 4-1硒化鋅鈹錳(Zn0.95-XBe0.05MnxSe)光學特性---39 4-2硒化鋅鈹錳(Zn0.95-XBe0.05MnxSe)溫度特性---63 第五章 結論--------------------------------------70 作者簡介------------------------------------------71 參考文獻-----------------------------------------72 圖索引 圖索引表---------------------------------------------Ⅵ 圖1-1 (a)閃鋅礦能帶結構 --------------------------5 圖1-2 (a)閃鋅礦晶體結構 --------------------------6 圖3-1 光激螢光 (PL) 發光意示圖----------------------13 圖3-1-1 PL系統圖-----------------------------------14 圖3-2-1 於熱平衡條件下,n型半導體表面空間電荷區之能帶示意圖 ----------------------------------------------------20 圖3-2-2 照光下,n型半導體表面空間電荷區能帶示意圖及外加電場 下所造成載子之分離狀況----------------------21 圖3-2-3 照光下,n型半導體表面空間電荷區能帶示意圖載子優先捕 抓情形(I)電子(II)電洞--------------------22 圖3-2-4 照光下,n型半導體表面空間電荷區能帶示意圖及被缺陷 捕抓(I)電子(II)電洞之躍遷形----------------23 圖3-2-5 SPV實驗裝置圖-----------------------------------24 圖3-2-6 SPV系統圖--------------------------------------24 圖3-3-1、調制光譜量測系統圖------------------------------37 圖3-3-2、(a) PR (b) CER量測的調制裝置圖-----------------38 圖4-1 在15K下Zn0.95-xBe0.05MnxSe的CER譜線------------------43 圖4-2 在300K下Zn0.95-xBe0.05MnxSe的CER譜線----------------44 圖4-2 在15K下Zn0.95-xBe0.05MnxSe的PL譜線------------------45 圖4-4 在100K下Zn0.95-xBe0.05MnxSe的SPV譜線----------------46 圖4-5 在100K下Zn0.95-xBe0.05MnxSe的吸收譜線----------------47 圖4-6 (a)(b)分別表示在77K和300K,A sample(x=0.05)的CER、PL、SPV的比較-------------------------------------------48 圖4-7 (a)(b)分別表示在77K和300K,B sample(x=0.1)的CER、PL、SPV的比較。---------------------------------------------49 圖4-8 (a)(b)分別表示在77K和300K,C sample(x=0.15)的CER、PL、SPV的比較-------------------------------------------50 圖4-9 (a)(b)分別表示在77K和300K,D sample(x=0.2)的CER、PL、SPV的比較-----------------------------------------------51 圖4-10(a)、(b)、(c)、(d)分別表示A樣品(x=0.05)、 B樣品(x=0.1) C樣品(x=0.15) 、D樣品(x=0.2)的CER溫度變化譜線----------58 圖4-11(a)、(b)、(c)、(d)分別表示A樣品(x=0.05)、 B樣品(x=0.1) C樣品(x=0.15) 、D樣品(x=0.2)的DPV溫度變化譜線----------60 圖4-12(a)、(b)、(c)、(d)分別表示A樣品(x=0.05)、 B樣品(x=0.1) C樣品(x=0.15) 、D樣品(x=0.2)的PL溫度變化譜線-----------62 圖4-13(a)、(b)、(c)、(d)分別表示A樣品(x=0.05)、 B樣品(x=0.1) C樣品(x=0.15) 、D樣品(x=0.2)分別由三種量測CER、SPV、PL所得道的躍遷訊號對溫度作圖以極吻合曲線。----------------------64 圖4-14(a)、(b)、(c)、(d)分別表示A樣品(x=0.05)、 B樣品(x=0.1) C樣品(x=0.15) 、D樣品(x=0.2)由PL所得道的展寬對溫度作圖以極吻合曲線。------------------------------------------------66

參考文獻
1.MuŃoz, A., P. RodrÍguez, and A. Mujica, “Electronic and Structural Properties of BeSe, BeTe, and BeS: Comparison Between Ab-Initio Theory and Experiments,” Phys. Stat. Sol. (b), Vol. 198, pp. 439-446 (1996).

2.Waag, A., F. Fischer, H. J. Lugauer, T. Litzm J. Laubender, U. Lunz, U. Zehnder, W. Ossau, T. Gerhardt. M. Möller, and G. Landwehr, “Molecular-Beam Epitaxy of Beryllium-Chalcogenide-Based Thin Films and Quantum-Well Structures,” J. Appl. Phys., Vol. 80, pp. 792-796 (1996).

3.Silberstein, R. P., and Fred H. Pollak, “Observation of Exciton Quenching in GaAs at Room Temperature Using Electrolyte Electroreflectance,” Solid State Commun., Vol. 33, pp. 1131-1133 (1980).

4.汪建民,材料分析,第237〜249頁,新竹市,中國材料科學學會, 民國八十七年。

5.Kronki, L., and Y. Shapira, “Surface Photovoltage Phenomena: Theory, Experiment, and Applications,” Surf. Sci. Reports, Vol. 37, pp. 1-206 (1999).

6.Leibovitch, M., L. Kronik, E. Fefer, L. Burstein, V. Korobov and Y. Shapira, “Surface Photovoltage Spectroscopy of Thin Films,” J. Appl. Phys., Vol. 79, No. 11, pp. 8549-8556 (1996).

7.Berry, A. K., D. K. Gaskill, and G. T. Stauf, “Photoreflectance of Semi-Insulating InP: Resistivity Effects on the Exciton Phase,” Appl. Phys. Lett., Vol. 58, pp. 2824-2826 (1991).

8.Bicelli, L. P., “Excitonic Interference Phenomena in Electrolyte Electroreflectance,” J. Appl. Phys., Vol. 62, pp. 4523-4527 (1987).

9.Acosta-Ortiz S. E., and L. Martinez, “Measurements of Above-Bandgap Optical Anisotropies in the (001) Surface of GaAs,” Solid State Commun., Vol. 64, pp. 809-811 (1987).

10.Acosta-Ortiz S. E., and L. Martinez, “Electro-Optic Effects in the Optical Anisotropies of (001) GaAs,” Phys. Rev. B., Vol. 40, pp. 1426-1429 (1989).

11.Glembocki, O. J., N. Bottka and J. E. Fuxrneaux, “Effects of Impurity Transition on Electroreflectance in Thin Epitaxial GaAs and Ga1-xAlxAs/GaAs Layers,” J. Appl. Phys., Vol. 57, pp. 432-437 (1985).

12.Tober, R. L., and J. D. Bruno, “Modulation Effects Near the GaAs Absorption Edge,” J. Appl. Phys., Vol. 68, pp. 6388-6392 (1990).

13.Qiang, H., F. H. Pollak and G. Hickman, “Piezo-Photoreflectance of Direct Gap of GaAs and Ga0.78Al0.22As,” Solid State Commun., Vol. 76, pp. 1087-1091 (1990).

14.Yin, X., X. Guo, F. H. Pollak, G. D. Petitt, J. M. Woodall, T. P. Chen and C. W. Tu, “Nature of Band Bending at Semiconductor Surfaces by Contactless Electroreflectance,” Appl. Phys. Lett., Vol. 60, pp. 1336-1338 (1992).

15.Shen, H., M. Dutta, L. Fotiadis, P. G. Newman, R. P. Moerkirk, W. H. Chang and R. N. Sacks, “Photoreflectance Study of Surface Fermi Level in GaAs and GaAlAs,” Appl. Phys. Lett., Vol. 57, pp. 2118-2120 (1990).

16.Kanata, T., M. Matsunaga, H. Takakawa, Y. Hamakawa and T. Nishino, “Deep-Level Characterization of n-type GaAs by Photoreflectance Spectroscopy,” J. Appl. Phys., Vol. 69, pp. 3691-3695 (1991).

17.Pollak, F. H., “Modulation Spectroscopy as a Technique for Semiconductor Characterization,” Proc. Society of Photo-Optical Instrumentation Engineers (SPIE, Bellingham), Vol. 276, pp. 142-156 (1981).

18.Huang, D., G. Ji, U. K. Reddy, H. Morkoc, F. Xiong and T. A. Tombrello, “Photoreflectance, Absorption, and Nuclear Resonance Reaction Studies of AlxGa1-xAs Grown by Molecular-Beam Epitaxy,” J. Appl. Phys., Vol. 63, pp. 5447-5453 (1988).

19.Seraphin, B. O., “The Effect of an Electric Field on Reflectivity of Germanium”, Proc. 7th Int. Conf. Phys. Semicond., ed. by M. Hulin, Academic, Dunod, Paris (1964).

20.Bylsma, R. B., W. M. Becker, J. Kossut and U. Debska, “Dependence of Energy Gap on x and T in ZnMnSe: The Role of Exchange Interaction,” Phys. Rev. B, Vol. 33, No. 12, pp. 8207 (1986).

21.Lee, Y. R., A. K. Ramdas, “Energy Gap, Excitonic, and “Mn2+” Optical Transition in Mn-base Ⅱ-Ⅵ Diluted Magnetic Semiconductor,” Phys. Rev. B, Vol. 38, No. 15, pp. 10600 ( 1988).

22.Liu, Y. T., P. Sitarek, Y. S. Huang, F. Firszt, S. Łęgowski, H. Męczyńska, A. Marasek, W. Paszkowicz and K. K. Tiong, “Temperature Dependent of the Edge Excitonic Transition of the Wurtzite CdBeZnSe Crystals,” J. Appl. Phys., Vol. 98, No. 08, pp. 083519 (2005).

23.Wang, J. Z., P. J. Huang, H. P. Hsu, Y. S. Huang, F. Firszt, S. Łęgowski, H. Męczyńska, A. Marasek, and K. K. Tiong, “Optical Characterization of Cd1-x-yBexZnySe Mixed Crystals,” J. Appl. Phys., Vol. 101, pp. 103539 (2007).

24.Rozploch, F., J. Patyk, F. Eirszt, S. Legowski, H. Meczynska, J. Zakrzewski, and A. Marasek, ”Raman, Photoluminescence and Photoacoustic Investigation of ZnBeMnSe Mixed Crystals,” Phys. stat. sol. (b), Vol. 229, No. 2, pp. 707-709 (2002).

25.Zakrzewski, J., F. Firszt, S. Legowski, H. Meczynska, M. Pawlak, and A. Marasek, “Piezoelectric and Pyroelectric Study of Zn1-x-yBexMnySe Mixed Crystals, ” Review of Scientific Instruments, Vol. 74, No. 01.

26.Fiederling, R., M. Kein, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkanyo, “Piezoelectric and Pyroelectric Study of Zn1-x-yBexMnySe Mixed Crystals,” Nature ~London, Vol. 402, pp. 787 (1999).

27.Paszkowicz, W., K. Godwod, J. Domagała, F. Firszt, J. Szatkowski, H. Męczyńska, S. Łegowski, and M. Marczak, “Structural, Optical and Thermal Properties of Bulk Zn -xBexTe Crystals,” Solid State Commun., Vol. 107, pp. 735 (1998).

28.Wronkowska, A. A., A. Bukaluk, A. Wronkowski, M. Trzcinski, F. Firszt, S. Łęgowski, and H. Męczyńska, “Ellipsometric Photoluminescence and Auger Electron Spectroscopy Study of ZnBeSe, ZnBeMnSe Crystals,” Surf. Sci., Vol. 170, pp. 507-510 (2002).

29.Varshni, Y. P., “Temperature Dependence of Energy Gap in Semiconductors, ” Physica., Vol. 34, No. 1, pp. 149-154 (1967).

30.Malikova, L., W. Krystek, F. H. Pollak, N. Dai, A. Cavus, and M. C. Tamargo, “Temperature Dependence of the Direct Gaps of ZnSe and Zn0.56Cd0.44Se,” Phys. Rev. B., Vol. 54, No. 3, pp. 1819-1824 (1996).

31.Pollak, F. H., “Modulation Spectroscopy as a Technique for Semiconductor Characterization,” Proc. Society of Photo-Optical Instrumentation Engineers (SPIE, Bellingham), Vol. 276, pp. 142-156 (1981).

32.Leeor Kronik, Yoram Shapira, “Surface Photovoltage Spectroscopy of Semiconductor Structure: at the Crossroad of Physics, Chemistry and Electrical Engineering,” Surface Interface Analysis, Vol. 31, pp. 954-965 (2001).

QR CODE