簡易檢索 / 詳目顯示

研究生: Tilahun Ayane Debele
Tilahun - Ayane Debele
論文名稱: POLYSACCHARIDE BASED NANOCARRIERS FOR ANTICANCER DRUG AND PHOTOSENSITIZER DELIVERY TO ENHANCE CHEMOTHERAPEUTIC EFFICIENCY AND PHOTODYNAMIC THERAPY OF CANCERS
POLYSACCHARIDE BASED NANOCARRIERS FOR ANTICANCER DRUG AND PHOTOSENSITIZER DELIVERY TO ENHANCE CHEMOTHERAPEUTIC EFFICIENCY AND PHOTODYNAMIC THERAPY OF CANCERS
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 王丞浩
Chen-Hao Wang
何郡軒
Jinn-Hsuan Ho
駱俊良
Chun-Liang Lo
朱一民
I-Ming Chu
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 204
中文關鍵詞: 光動力治療β-谷固醇聚乙烯亞胺肝素微胞奈米凝膠菁鋅小紅莓腦磷脂質
外文關鍵詞: Nanogels, β-Sitosterol, Cephalin, Zinc phthalocyanine
相關次數: 點閱:860下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

癌症是DNA序列改變導致細胞異常增生,影響正常生理機能,而主要治療方式有手術、化療和放射線治療。現今非侵入式光動力治療(PDT)被受矚目,將光敏感物質標於癌細胞位置再以特定波長的光照射,產生光化反應形成自由基(ROS)毒殺細胞。然而傳統化療和光敏感物質的溶解性不佳、缺乏選擇性和多重抗藥性至今仍然是所面臨的問題。本論文合成高分子多醣基(polysaccharide)衍生物作為載體包覆抗癌藥物(Dox)用於增強藥物傳遞效率,且同時為光敏感物質包覆酞菁鋅(ZnPc)用於光動力治療。多醣基納米顆粒具生物相容性和生物可降解性,應用於多方面藥物傳遞系統中。
第一部分為HPC奈米凝膠由肝素(heparin)、聚乙烯亞胺(PEI)和半胱氨酸(L-cys)合成,再由傅立葉紅外線光譜儀(FT-IR)、氫譜核磁共振(1H-NMR)鑑定,藉由穿透式電子顯微鏡(TEM)和動態光散射儀(DLS)得知粒徑大小為<200nm。再以透析法將抗癌藥物酞菁鋅(ZnPc)包覆於HPC膠中,藉由氧化還原應答將藥物釋放,且從單態氧檢測中得知酞菁鋅能夠均勻包覆於奈米凝膠,以增強光動力治療效果。結果證實雙硫鍵膠聯奈米凝膠HPC載體能夠藉由光動力治療傳遞藥物治療。
上述研究HPC奈米凝膠中,聚乙烯亞胺(PEI)毒性仍然太高,因此第二部分藉由磷脂(phospholipids)和肝素(heparin)修飾PEI,以增加藥物包覆並且將毒性降到最小。由肝素(heparin)、L-磷脂酰乙醇胺和組胺酸(L-his)藉由EDC/NHS合成具有酸鹼應答的微胞HDH。以傅立葉紅外線光譜儀(FT-IR)、氫譜核磁共振(1H-NMR)鑑定,藉由動態光散射儀(DLS)得知粒徑大小為111.57 ± 12.36 nm和電位-59.8 ± 5.2 mV。而微胞藥物含量高達14.52 ± 1.2%、藥物包覆率為65.47 ± 1.87%。第96小時在不同pH 條件下的體外釋放效率,顯示微胞在酸性環境(pH 5) 釋放酞菁鋅高達91%相較於中性環境(pH 7.4)63%佳。觀察微胞和子宮頸癌細胞(Hela cell)的生物特性,由螢光顯微鏡得知細胞吞噬影像,此外ZnPc-HDH細胞毒性高於ZnPc。
雖然上述方法(手術、化療和放射線治療)能夠制治療癌症,但仍然有其它方式可抑制癌細胞擴散。第三部分、設計Heparin-β-Sitosterol氧化還原應答微胞做為載體,並且包覆抗癌藥物小紅莓(Dox)研究體外癌細胞轉移性。光譜儀(FT-IR)、氫譜核磁共振(1H-NMR)和掃描式電子顯微鏡(FE-SEM)鑑定bHSC共聚物,藉由動態光散射儀(DLS)得知粒徑大小為145.07 ± 2.97 nm和電位-56.1 ± 2.16 mV mV,此外細胞毒性由MTT和流式細胞儀分析。由透析法包覆抗癌藥物,藥物含量為16.49 ± 1.2%和藥物包覆率58.47 ± 1.87%。體外48小時藥物釋放為比較氧化還原應答能力,含有 GSH (5 mM)藥物釋放量89%高於沒有GSH藥物釋放52%。螢光顯微鏡下觀察HeLa細胞內吞作用,明顯有紅色螢光訊號分佈於細胞核中,證實包覆藥物的載體成功被細胞吞噬,並且小紅莓從載體中釋放。此外,刮痕試驗(scratch assay)和溶血(hemolysis assays)測定細胞轉移性和血溶性測試,螢光顯微鏡中F-肌動蛋白(F-actin)訊號結果證實肝素(heparin)和bhsc能夠成功抑制癌細胞轉移。上述現象可知bHSC微包具有毒性低、血容性高和抗轉移性特性,適合做為藥物釋放標的載體和同時可抑制癌細胞轉移。


Cancer is a multi-gene, multi-step devastating disease with an altered DNA sequence (mutation) which grow uncontrollable by disregarding the normal rule of cell division. The current available treatment methods of cancers are primarily centered on Surgery, Irradiation and the Systemic administration of Chemotherapeutics agents. Recently, photodynamic therapy (PDT) is also an alternative, non-invasive combinatorial therapeutic modality using light, photosensitizer (PS), and oxygen for the treatment of cancer and other diseases. However, those conventional chemotherapy and photosensitizers (PSs) used nowadays have certain limitations (a) Low (non) water solubility, (b) Lack of selectivity and (c) Multidrug resistance (MDR). Hence, a technology platform that can effectively increase PSs and chemotherapeutic agent’s solubility and confer targeting potential is highly sought after. Nano-formulating of chemotherapeutic agents and PSs with polymeric nanoparticles poses as potential strategy to satisfy the requirements of an ideal chemotherapy and PDT system. In this dissertation, polysaccharide based nanocarrier were synthesized and characterized to deliver anticancer drugs (Doxorubicin) and PSs (Zinc phthalocyanine) that have been used to enhance the chemotherapeutic efficacy and photodynamic therapy against cancers. Polysaccharide-based nanocarriers have a great interest as a vesicle of several anti-cancer drugs and PSs due to their unique multi-functional groups in addition to their physicochemical properties, including biodegradability, water solubility and biocompatibility. The presence of multi-functional groups on the polysaccharide backbone allows facile biochemical or chemical modification to synthesize polysaccharide based nanocarriers with miscellaneous structures. Hence, in this abstract several heparin derivitized based nanoparticle (i.e. nanogels and micelles) as the carrier of PS and anticancer drug were summarized session by session to clearly investigate its role in enhancing PDT activity and chemotherapeutic efficiency.
In the first work, bioreducible heparin polyethyleneimine (HPC) nanogel composed of heparin, branched polyethyleneimine (PEI) and L-cysteine was synthesized and characterized. 1H-NMR and FTIR analysis confirmed the formation of HPC nanogels while TEM and dynamic light scattering revealed uniform spherical nanoparticles with average diameter of <200 nm. Zinc phthalocyanine (ZnPc) was encapsulated via the dialysis method and the drug is released in vitro from disulfide-containing HPC nanogels in a redox-sensitive manner. Additionally, HPC nanogels possess bright blue fluorescence which eliminates the use of additional probing agent in image-guided drug delivery. Moreover, singlet oxygen detection revealed that nanogels prevented ZnPc aggregation thus enhancing 1O2 generation and photodynamic therapy (PDT) efficacy. These results showed that disulfide crosslinked HPC nanogels are promising vehicles for stimulated photosensitizer delivery in advanced PDT.
Even though, the cytotoxicity of PEI are highly improved, the synthesized HPC nanogels has minimum amount of drug loading capacity (~ 42%). Therefore, to enhance drug loading capacity and to minimize cytotoxicity we were designed our second works based on biocompatible heparin and phospholipids. In the second work, we describe the synthesis of a stable, pH-sensitive micelle from heparin, 1, 2-distearoyl-sn-glycerol-3-phosphoethanolamine, and L-histidine (HDH) through EDC/NHS chemistry. 1H-NMR and FTIR analysis confirmed the formation of HDH copolymers and DLS measurements indicated a particle size of 111.57 ± 12.36 nm and zeta potential of -59.8 ± 5.2 mV for the nanoparticles. The drug-loading and encapsulation efficiency of the micelles were 14.52 ± 1.2% and 65.47 ± 1.87%, respectively. Drug release studies showed approximately 91% zinc phthalocyanine (ZnPc) release from micelles in acidic conditions (pH 5.0) in comparison with 63% release physiological conditions (pH 7.4) after 96 h of incubation. Singlet oxygen detection revealed that the micelles prevented ZnPc aggregation and enhanced 1O2 generation. Cellular uptake of ZnPc-loaded micelles (ZnPc-HDH) was observed using confocal microscopy. Phototoxicity experiments in HeLa cells showed that ZnPc-loaded micelles had higher toxicity than the same concentration of free ZnPc had. Hence, pH-sensitive HDH micelles are a promising carrier for hydrophobic ZnPc and improvement of PDT efficacy.
Although there are several clinical attempts to treat tumors (including surgery, radiotherapy, chemotherapy and combined therapy) at the primary site there are still a little available therapy to inhibit the spread of metastatic cancer. In the third work, a redox sensitive Heparin-β-Sitosterol micelle was synthesized as the carrier of pharmaceutical agents (Dox) and also antimetastasis activities of the micelles was investigated in vitro using scratch assay. 1H-NMR and FTIR analysis confirmed the formation of bHSC copolymers while DLS used to measure particle size (145.07 ± 2.97 nm) and zeta potentials (-56.1 ± 2.16 mV) of micelle. Spherical like surface morphology of bHSC micelle also investigated using FE-SEM. Both MTT and Flow cytometry analysis were confirmed less toxicity of synthesized micelle. Dox was encapsulated via the dialysis method and the Dox loading and encapsulation efficiency was 16.49 ± 1.2% and 58.47 ± 1.87%, respectively. In vitro Dox release study was evaluated by mimicking the intracellular levels of GSH (5 mM) and approximately 89% and 52% of the Dox was released in the 48 h of incubation in the presence and absence of GSH respectively, which clearly shows synthesized micelle was a redox sensitive. The cellular internalization of Dox-loaded bHSC nanoparticles was studied using confocal laser scanning microscope and the strong fluorescence intensity signals (red fluorescence) was observed mainly in the cell’s nucleus. This confirms the Dox loaded bHSC was up taken by HeLa cells and the Dox were released from bioreducible bHSC micelle. In addition to this, antimetastasis and hemocompatibility of bHSC was evaluated via scratch and hemolysis assays respectively. F-actin fluorescence microscopy result shows, heparin and bHSC treated HeLa cells had poorly oriented stress fibers. In summary, due to its less toxicity, an excellent hemocompatibility and antimetastasis effects, the synthesized bHSC micelle is the best candidate carriers in the drug delivery system and can be used to inhibit metastatic cancers as well.

Contents 摘要 iii Abstract v Acknowledgements ix Table of Contents xi List of Figures xv List of Table xix List of Schemes xx List of abbreviations xxi CHAPTER 1 1 1.1. Introduction 1 1.2. Objective 4 1.2.1. General objective 4 1.2.2. Specific objective 5 CHAPTER 2 6 2.1. Historical Background of Photodynamic Therapy 6 2.2. Principle and mechanism of photodynamic therapy 6 2.2.1 Photosensitizer 8 2.2.2. Light source in PDT 11 2.3. Anti-tumor activity of PDT 12 2.3.1. Direct Tumor Cell Kill 12 2.3.2. Vascular Damage 14 2.3.3. Inflammatory and Immune Response 14 2.4. Chemotherapy 16 2.5. Drug delivery systems 17 2.5.1. Polysaccharide 20 2.5.1.1. Heparin 20 2.5.1.2. Chitosan 21 2.5.1.3. Hyaluronic acid 22 2.5.1.4. Alginate 23 2.5.1.5. Pullulans 24 2.5.1.6. Pectin 25 2.5.1.7. Chondroitin sulfate 26 2.5.1.8. Cellulose 26 2.5.2. Polysaccharide based nanoparticle synthesis 30 2.5.2.1. Polyelectrolyte complexation (PEC) 30 2.5.2.2. Self-assembly 30 2.5.2.3. Covalent cross linking 31 2.5.2.4. Ionic crosslinking 32 2.5.3. Polysaccharide-Based Nanogels Drug Delivery Systems 34 2.5.4. Polysaccharide-Based micelle Drug Delivery Systems 36 CHAPTER 3 37 3.1. Synthesis and characterization of bioreducible heparin-polyethyleneimine nanogels: application as imaging-guided photosensitizer delivery vehicle in photodynamic therapy (PDT) 37 3.2. Experimental Section 39 3.2.1. Materials 39 3.2.2. Preparation of HPC nanogels 40 3.2.3. Characterization of HPC nanogels 40 3.2.3.1. Particle size and zeta-potential 40 3.2.3.2. Fourier transformed infrared spectroscopy (FTIR) analysis 40 3.2.3.3. Nuclear magnetic resonance (1H-NMR) analysis 41 3.2.3.4. Transmission electron microscopy (TEM) 41 3.2.3.5. Scanning electron microscopy (SEM) 41 3.2.3.6. Fluorescence spectrophotometer 41 3.2.4. In vitro cytotoxity 42 3.2.5. Drug loading 42 3.2.6. Detection of singlet oxygen generation 43 3.2.7. Drug release study 44 3.2.8. Cellular uptake study of ZnPc-loaded HPC nanogels by confocal microscopy 44 3.2.9. Photodynamic cytotoxicity of ZnPc-HPC nanogels and ZnPc 45 3.3. Results and discussion 46 3.3.1. Preparation and characterization of HPC nanogels 46 3.3.2. Fluorescence properties of HPC nanogels 53 3.3.3. ZnPc loading in HPC nanogels 55 3.3.4. In vitro drug release 57 3.3.5. Detection of singlet oxygen generation 59 3.3.6. Cellular uptake of ZnPc-loaded HPC nanogels 61 3.3.7. Photodynamic cytotoxicity effect of ZnPc-HPC nanogels and ZnPc 62 3.4. Conclusion 64 CHAPTER 4 65 4.1. A pH sensitive micelle from heparin, phospholipid and histidine as the carrier of photosensitizer: application to enhance photodynamic therapy of cancer 65 4.2. Experimental Section 67 4.2.1. Materials 67 4.2.2. Synthesis 67 4.2.2.1. Synthesis of pH sensitive Heparin-1, 2-Distearoyl-sn-glycero-3-phosphoethanolamine (HDH) conjugate 67 4.2.3. Characterization of HDH conjugates 68 4.2.3.1. FTIR analysis 68 4.2.3.2. NMR analysis 68 4.2.4. Synthesis of HDH micelle 69 4.2.5. In vitro stability of nanoparticles 69 4.2.6. Determination of critical micellization concentration (CMC) 70 4.2.7. In vitro cytotoxicity 70 4.2.8. Drug loading 71 4.2.9. Detection of singlet oxygen generation 72 4.2.10. Drug release study 73 4.2.11. Cellular uptake study 73 4.2.12. Phototoxicity of ZnPc loaded HDH and free ZnPc 74 4.3. Result and Discussion 75 4.3.1. Preparation and characterization of HDH micelle 75 4.3.2. Size and zeta potential 80 4.3.3. Micelle formation and Determination of critical micelle concentration (CMC) 83 4.3.4. In vitro cytotoxicity of HDH 86 4.3.5. ZnPc loading in HDH 86 4.3.6. ZnPc release from HDH micelle 88 4.3.7. Detection of singlet oxygen generation 90 4.3.8. Photodynamic cytotoxicity effect of ZnPc-HDH micelle and ZnPc 93 4.3.9. In vitro uptake study 95 4.4. Conclusion 95 CHAPTER 5 97 5.1. Synthesis and characterization of redox sensitive Heparin-β-Sitosterol micelle: Application as the carrier of pharmaceutical agents (Dox) and investigation Antimetastasis Activities of the micelles in vitro 97 5.2. Experimental section 101 5.2.1. Materials 101 5.2.2. Synthesis 101 5.2.2.1. Synthesis of thiolated heparin 101 5.2.2.2. Synthesis of bioreducible heparin- β-Sitosterol (bHSC) conjugate 102 5.2.3. Characterization of bHSC conjugates 102 5.2.3.1. FTIR analysis 102 5.2.3.2. 1H-NMR analysis 102 5.2.4. Synthesis of bHSC micelle 103 5.2.5. Determination of critical micellization concentration (CMC) 103 5.2.6. In vitro cytotoxicity 104 5.2.7. Drug loading 105 5.2.8. In vitro stability of Dox-bHSC nanoparticles 105 5.2.9. Drug release study 106 5.2.10. Cellular uptake study 106 5.2.11. Hemolysis Assay 107 5.2.12. Scratch Assay 107 5.2.13. Fluorescence microscopy of Actin Cytoskeleton 107 5.2.14. Cell Apoptosis/Necrosis by Flow cytometry 108 5.3. Result and Discussion 108 5.3.1. Characterization of thiolated heparin and bHSC conjugates 108 5.3.2. Critical Micelle concentration (CMC) 113 5.3.3. Dox loading and release study 116 5.3.4. In vitro stability of Dox-bHSC nanoparticles 119 5.3.5. In Vitro Cytotoxicity of Heparin, bHSC, free Dox and Dox-bHSC 121 5.3.6. Hemocompatibility test 125 5.3.7. Cellular uptake of Dox-bHSC 127 5.3.8. In vitro Scratch Assay 127 5.3.9. Fluorescence Microscopy of Actin Cytoskeleton 128 5.4. Conclusion 130 CHAPTER 6 132 6.1. General Summary 132 6.2. Recommendation 133 7. Bibliography 135 8. Appendix 180 8.1. List of publication 180

1. Bertram, J. S., The molecular biology of cancer. Molecular aspects of medicine 2000, 21, (6), 167-223.
2. Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D., Global cancer statistics. CA: a cancer journal for clinicians 2011, 61, (2), 69-90.
3. Sriraman, S. K.; Aryasomayajula, B.; Torchilin, V. P., Barriers to drug delivery in solid tumors. Tissue Barriers 2014, 2, e29528.
4. Marin, J. J. G.; Castano, B.; Blazquez, A. G.; Rosales, R.; Efferth, T.; Monte, M. J., Strategies for overcoming chemotherapy resistance in enterohepatic tumours. Current molecular medicine 2010, 10, (5), 467-485.
5. Longley, D. B.; Johnston, P. G., Molecular mechanisms of drug resistance. The Journal of pathology 2005, 205, (2), 275-292.
6. Kwon, G. S., Polymeric micelles for delivery of poorly water-soluble compounds. Critical Reviews™ in Therapeutic Drug Carrier Systems 2003, 20, (5).
7. Debele, T.; Peng, S.; Tsai, H.-C., Drug Carrier for Photodynamic Cancer Therapy. International journal of molecular sciences 2015, 16, (9), 22094.
8. Allison, R. R.; Moghissi, K., Photodynamic Therapy (PDT): PDT Mechanisms. Clinical endoscopy 2013, 46, (1), 24-29.
9. O'Connor, A. E.; Gallagher, W. M.; Byrne, A. T., Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochemistry and photobiology 2009, 85, (5), 1053-74.
10. Ormond, A.; Freeman, H., Dye Sensitizers for Photodynamic Therapy. Materials 2013, 6, (3), 817-840.
11. Schuitmaker, J. J.; Baas, P.; van Leengoed, H. L.; van der Meulen, F. W.; Star, W. M.; van Zandwijk, N., Photodynamic therapy: a promising new modality for the treatment of cancer. Journal of photochemistry and photobiology. B, Biology 1996, 34, (1), 3-12.
12. Stylli, S. S.; Kaye, A. H.; MacGregor, L.; Howes, M.; Rajendra, P., Photodynamic therapy of high grade glioma - long term survival. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 2005, 12, (4), 389-98.
13. Felice, B.; Prabhakaran, M. P.; Rodriguez, A. P.; Ramakrishna, S., Drug delivery vehicles on a nano-engineering perspective. Materials science & engineering. C, Materials for biological applications 2014, 41, 178-95.
14. Lassalle, H. P.; Wagner, M.; Bezdetnaya, L.; Guillemin, F.; Schneckenburger, H., Fluorescence imaging of Foscan and Foslip in the plasma membrane and in whole cells. Journal of photochemistry and photobiology. B, Biology 2008, 92, (1), 47-53.
15. Sadasivam, M.; Avci, P.; Gupta, G. K.; Lakshmanan, S.; Chandran, R.; Huang, Y.-Y.; Kumar, R.; Hamblin, M. R., Self-assembled liposomal nanoparticles in photodynamic therapy. European journal of nanomedicine 2013, 5, (3), 10.1515/ejnm-2013-0010.
16. Li, L.; Huh, K. M., Polymeric nanocarrier systems for photodynamic therapy. Biomaterials Research 2014, 18, 19.
17. Gibot, L.; Lemelle, A.; Till, U.; Moukarzel, B.; Mingotaud, A. F.; Pimienta, V.; Saint-Aguet, P.; Rols, M. P.; Gaucher, M.; Violleau, F.; Chassenieux, C.; Vicendo, P., Polymeric micelles encapsulating photosensitizer: structure/photodynamic therapy efficiency relation. Biomacromolecules 2014, 15, (4), 1443-55.
18. Vaupel, P., Tumor microenvironmental physiology and its implications for radiation oncology. Seminars in Radiation Oncology 2004, 14, (3), 198-206.
19. Maeda, H., SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Advanced drug delivery reviews 2001, 46, (1–3), 169-185.
20. Leu, A. J.; Berk, D. A.; Lymboussaki, A.; Alitalo, K.; Jain, R. K., Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer research 2000, 60, (16), 4324-7.
21. Maeda, H., Tumor-Selective Delivery of Macromolecular Drugs via the EPR Effect: Background and Future Prospects. Bioconjugate Chemistry 2010, 21, (5), 797-802.
22. Debele, T. A.; Peng, S.; Tsai, H.-C., Drug Carrier for Photodynamic Cancer Therapy. International journal of molecular sciences 2015, 16, (9), 22094-22136.
23. Jian, F.; Zhang, Y.; Wang, J.; Ba, K.; Mao, R.; Lai, W.; Lin, Y., Toxicity of biodegradable nanoscale preparations. Curr Drug Metab 2012, 13, (4), 440-6.
24. Abed, A.; Assoul, N.; Ba, M.; Derkaoui, S. M.; Portes, P.; Louedec, L.; Flaud, P.; Bataille, I.; Letourneur, D.; Meddahi-Pelle, A., Influence of polysaccharide composition on the biocompatibility of pullulan/dextran-based hydrogels. Journal of biomedical materials research. Part A 2011, 96, (3), 535-42.
25. Rodrigues, S.; Cardoso, L.; da Costa, A.; Grenha, A., Biocompatibility and Stability of Polysaccharide Polyelectrolyte Complexes Aimed at Respiratory Delivery. Materials 2015, 8, (9), 5268.
26. Saravanakumar, G.; Jo, D. G.; Park, J. H., Polysaccharide-based nanoparticles: a versatile platform for drug delivery and biomedical imaging. Current medicinal chemistry 2012, 19, (19), 3212-29.
27. Hafrén, J.; Zou, W.; Córdova, A., Heterogeneous ‘Organoclick’ Derivatization of Polysaccharides. Macromolecular Rapid Communications 2006, 27, (16), 1362-1366.
28. Cumpstey, I., Chemical Modification of Polysaccharides. ISRN Organic Chemistry 2013, 2013, 27.
29. Tang, F.; Li, L.; Chen, D., Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced Materials 2012, 24, (12), 1504-1534.
30. Mura, S.; Nicolas, J.; Couvreur, P., Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013, 12, (11), 991-1003.
31. Estrela, J. M.; Ortega, A.; Obrador, E., Glutathione in cancer biology and therapy. Critical reviews in clinical laboratory sciences 2006, 43, (2), 143-81.
32. Dai Hai, N.; Jong Hoon, C.; Yoon Ki, J.; Ki Dong, P., Disulfide-crosslinked heparin-pluronic nanogels as a redox-sensitive nanocarrier for intracellular protein delivery. Journal of Bioactive and Compatible Polymers 2011, 26, (3), 287-300.
33. Yu, Z. Q.; Sun, J. T.; Pan, C. Y.; Hong, C. Y., Bioreducible nanogels/microgels easily prepared via temperature induced self-assembly and self-crosslinking. Chemical communications 2012, 48, (45), 5623-5.
34. Li, P.; Luo, Z.; Liu, P.; Gao, N.; Zhang, Y.; Pan, H.; Liu, L.; Wang, C.; Cai, L.; Ma, Y., Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. Journal of controlled release : official journal of the Controlled Release Society 2013, 168, (3), 271-9.
35. Wang, Z.-K.; Wang, L.-H.; Sun, J.-T.; Han, L.-F.; Hong, C.-Y., In situ generation of bioreducible and acid labile nanogels/microgels simply via adding water into the polymerization system. Polymer Chemistry 2013, 4, (5), 1694-1699.
36. Kemp, M. M.; Linhardt, R. J., Heparin‐based nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2010, 2, (1), 77-87.
37. Daniell, M. D.; Hill, J. S., A history of photodynamic therapy. The Australian and New Zealand journal of surgery 1991, 61, (5), 340-8.
38. Wiedmann, M. W.; Caca, K., General principles of photodynamic therapy (PDT) and gastrointestinal applications. Current pharmaceutical biotechnology 2004, 5, (4), 397-408.
39. Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B. C.; Golab, J., Photodynamic therapy of cancer: an update. CA: a cancer journal for clinicians 2011, 61, (4), 250-81.
40. Hossain, S. Z.; Azam, S. G.; Babar, S. E., Cancer treatment using multiphoton photodynamic therapy.
41. Komerik, N.; Wilson, M.; Poole, S., The effect of photodynamic action on two virulence factors of gram-negative bacteria. Photochemistry and photobiology 2000, 72, (5), 676-80.
42. Rajesh, S.; Koshi, E.; Philip, K.; Mohan, A., Antimicrobial photodynamic therapy: An overview. Journal of Indian Society of Periodontology 2011, 15, (4), 323-327.
43. Ackroyd, R.; Kelty, C.; Brown, N.; Reed, M., The history of photodetection and photodynamic therapy. Photochemistry and photobiology 2001, 74, (5), 656-69.
44. Yoon, I.; Li, J. Z.; Shim, Y. K., Advance in photosensitizers and light delivery for photodynamic therapy. Clinical endoscopy 2013, 46, (1), 7-23.
45. Maisch, T.; Szeimies, R. M.; Jori, G.; Abels, C., Antibacterial photodynamic therapy in dermatology. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology 2004, 3, (10), 907-17.
46. Castano, A. P.; Demidova, T. N.; Hamblin, M. R., Mechanisms in photodynamic therapy: part one—-photosensitizers, photochemistry and cellular localization. Photodiagnosis and photodynamic therapy 2004, 1, (4), 279-293.
47. Ma, J.; Jiang, L., Photogeneration of singlet oxygen (1O2) and free radicals (Sen*-, O2*-) by tetra-brominated hypocrellin B derivative. Free radical research 2001, 35, (6), 767-77.
48. Staicu, A.; Pascu, A.; Nuta, A.; Sorescu, A.; Raditoiu, V.; Pascu, M., STUDIES ABOUT PHTHALOCYANINE PHOTOSENSITIZERS TO BE USED IN PHOTODYNAMIC THERAPY. Romanian Reports in Physics 2013, 65, (3), 1032-1051.
49. Zhao, B.; He, Y. Y., Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert review of anticancer therapy 2010, 10, (11), 1797-809.
50. MacCormack, M. A., Photodynamic therapy in dermatology: an update on applications and outcomes. Seminars in cutaneous medicine and surgery 2008, 27, (1), 52-62.
51. Moan, J., Properties for optimal PDT sensitizers. Journal of Photochemistry and Photobiology B: Biology 1990, 5, (3–4), 521-524.
52. Pushpan, S. K.; Venkatraman, S.; Anand, V. G.; Sankar, J.; Parmeswaran, D.; Ganesan, S.; Chandrashekar, T. K., Porphyrins in photodynamic therapy - a search for ideal photosensitizers. Current medicinal chemistry. Anti-cancer agents 2002, 2, (2), 187-207.
53. Usuda, J.; Kato, H.; Okunaka, T.; Furukawa, K.; Tsutsui, H.; Yamada, K.; Suga, Y.; Honda, H.; Nagatsuka, Y.; Ohira, T.; Tsuboi, M.; Hirano, T., Photodynamic therapy (PDT) for lung cancers. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 2006, 1, (5), 489-93.
54. Batlle, A. M., Porphyrins, porphyrias, cancer and photodynamic therapy--a model for carcinogenesis. Journal of photochemistry and photobiology. B, Biology 1993, 20, (1), 5-22.
55. Dougherty, T. J., An update on photodynamic therapy applications. Journal of clinical laser medicine & surgery 2002, 20, (1), 3-7.
56. Morton, C. A.; Brown, S. B.; Collins, S.; Ibbotson, S.; Jenkinson, H.; Kurwa, H.; Langmack, K.; McKenna, K.; Moseley, H.; Pearse, A. D.; Stringer, M.; Taylor, D. K.; Wong, G.; Rhodes, L. E., Guidelines for topical photodynamic therapy: report of a workshop of the British Photodermatology Group. The British journal of dermatology 2002, 146, (4), 552-67.
57. Peng, Q.; Berg, K.; Moan, J.; Kongshaug, M.; Nesland, J. M., 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochemistry and photobiology 1997, 65, (2), 235-51.
58. Lee, J. W.; Lee, H. I.; Kim, M. N.; Kim, B. J.; Chun, Y. J.; Kim, D., Topical photodynamic therapy with methyl aminolevulinate may be an alternative therapeutic option for the recalcitrant Malassezia folliculitis. International journal of dermatology 2011, 50, (4), 488-90.
59. Morton, C. A., Methyl aminolevulinate: actinic keratoses and Bowen's disease. Dermatologic clinics 2007, 25, (1), 81-7.
60. Dolmans, D. E.; Fukumura, D.; Jain, R. K., Photodynamic therapy for cancer. Nature reviews. Cancer 2003, 3, (5), 380-7.
61. Senge, M. O.; Brandt, J. C., Temoporfin (Foscan(R), 5,10,15,20-tetra(m-hydroxyphenyl)chlorin)--a second-generation photosensitizer. Photochemistry and photobiology 2011, 87, (6), 1240-96.
62. Triesscheijn, M.; Ruevekamp, M.; Aalders, M.; Baas, P.; Stewart, F. A., Outcome of mTHPC mediated photodynamic therapy is primarily determined by the vascular response. Photochemistry and photobiology 2005, 81, (5), 1161-7.
63. Kobayashi, W.; Liu, Q.; Nakagawa, H.; Sakaki, H.; Teh, B.; Matsumiya, T.; Yoshida, H.; Imaizumi, T.; Satoh, K.; Kimura, H., Photodynamic therapy with mono-L-aspartyl chlorin e6 can cause necrosis of squamous cell carcinoma of tongue: experimental study on an animal model of nude mouse. Oral oncology 2006, 42, (1), 46-50.
64. Liang, X.-H.; Cai, Y.-J.; Liao, X.-R.; Wu, K.; Wang, L.; Zhang, D.-B.; Meng, Q., Isolation and identification of a new hypocrellin A-producing strain Shiraia sp. SUPER-H168. Microbiological Research 2009, 164, (1), 9-17.
65. Hudson, J. B.; Zhou, J.; Chen, J.; Harris, L.; Yip, L.; Towers, G. H. N., HYPOCRELLIN, FROM HYPOCRELLA BAMBUASE, IS PHOTOTOXIC TO HUMAN IMMUNODEFICIENCY VIRUS. Photochemistry and photobiology 1994, 60, (3), 253-255.
66. Tang, P. M.; Liu, X. Z.; Zhang, D. M.; Fong, W. P.; Fung, K. P., Pheophorbide a based photodynamic therapy induces apoptosis via mitochondrial-mediated pathway in human uterine carcinosarcoma. Cancer biology & therapy 2009, 8, (6), 533-9.
67. Busch, T.; Cengel, K. A.; Finlay, J., Pheophorbide a as a photosensitizer in photodynamic therapy: in vivo considerations. Cancer biology & therapy 2009, 8, (6), 540-542.
68. Kato, H.; Furukawa, K.; Sato, M.; Okunaka, T.; Kusunoki, Y.; Kawahara, M.; Fukuoka, M.; Miyazawa, T.; Yana, T.; Matsui, K.; Shiraishi, T.; Horinouchi, H., Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung cancer (Amsterdam, Netherlands) 2003, 42, (1), 103-11.
69. Lee, L. S.; Thong, P. S. P.; Olivo, M.; Chin, W. W. L.; Ramaswamy, B.; Kho, K. W.; Lim, P. L.; Lau, W. K. O., Chlorin e6-polyvinylpyrrolidone mediated photodynamic therapy—A potential bladder sparing option for high risk non-muscle invasive bladder cancer. Photodiagnosis and photodynamic therapy 2010, 7, (4), 213-220.
70. Chin, W. W. L.; Heng, P. W. S.; Thong, P. S. P.; Bhuvaneswari, R.; Hirt, W.; Kuenzel, S.; Soo, K. C.; Olivo, M., Improved formulation of photosensitizer chlorin e6 polyvinylpyrrolidone for fluorescence diagnostic imaging and photodynamic therapy of human cancer. European Journal of Pharmaceutics and Biopharmaceutics 2008, 69, (3), 1083-1093.
71. Samy, N. A.; Salah, M. M.; Ali, M. F.; Sadek, A. M., Effect of methylene blue-mediated photodynamic therapy for treatment of basal cell carcinoma. Lasers in medical science 2015, 30, (1), 109-15.
72. Tardivo, J. P.; Del Giglio, A.; de Oliveira, C. S.; Gabrielli, D. S.; Junqueira, H. C.; Tada, D. B.; Severino, D.; de Fátima Turchiello, R.; Baptista, M. S., Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagnosis and photodynamic therapy 2005, 2, (3), 175-191.
73. Saw, C. L.; Heng, P. W.; Olivo, M., Potentiation of the photodynamic action of hypericin. Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer 2008, 27, (1), 23-33.
74. Wang, X.; Guo, Y.; Yang, S.; Wang, C.; Fu, X.; Wang, J.; Mao, Y.; Zhang, J.; Li, Y., Cellular and molecular mechanisms of photodynamic hypericin therapy for nasopharyngeal carcinoma cells. The Journal of pharmacology and experimental therapeutics 2010, 334, (3), 847-53.
75. Kinsella, T. J.; Baron, E. D.; Colussi, V. C.; Cooper, K. D.; Hoppel, C. L.; Ingalls, S. T.; Kenney, M. E.; Li, X.; Oleinick, N. L.; Stevens, S. R.; Remick, S. C., Preliminary Clinical and Pharmacologic Investigation of Photodynamic Therapy with the Silicon Phthalocyanine Photosensitizer Pc 4 for Primary or Metastatic Cutaneous Cancers. Frontiers in Oncology 2011, 1, 14.
76. Alexander, W., American Society of Clinical Oncology, 2010 Annual Meeting and Rose Bengal: From a Wool Dye to a Cancer Therapy. Pharmacy and Therapeutics 2010, 35, (8), 469-478.
77. O’Connor, A. E.; Gallagher, W. M.; Byrne, A. T., Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy. Photochemistry and photobiology 2009, 85, (5), 1053-1074.
78. Lobel, J.; MacDonald, I. J.; Ciesielski, M. J.; Barone, T.; Potter, W. R.; Pollina, J.; Plunkett, R. J.; Fenstermaker, R. A.; Dougherty, T. J., 2‐[1‐hexyloxyethyl]‐2‐devinyl pyropheophorbide‐a (HPPH) in a nude rat glioma model: Implications for photodynamic therapy. Lasers in surgery and medicine 2001, 29, (5), 397-405.
79. Brancaleon, L.; Moseley, H., Laser and non-laser light sources for photodynamic therapy. Lasers in medical science 2002, 17, (3), 173-86.
80. Peng, F.; Wu, H.; Zheng, Y.; Xu, X.; Yu, J., The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers in medical science 2012, 27, (3), 645-653.
81. Sibata, C.; Colussi, V.; Oleinick, N.; Kinsella, T., Photodynamic therapy: a new concept in medical treatment. Brazilian Journal of Medical and Biological Research 2000, 33, (8), 869-880.
82. Mang, T. S., Lasers and light sources for PDT: past, present and future. Photodiagnosis and photodynamic therapy 2004, 1, (1), 43-48.
83. Mizeret, J. C.; van den Bergh, H. E., Cylindrical fiberoptic light diffuser for medical applications. Lasers in surgery and medicine 1996, 19, (2), 159-67.
84. Abels, C., Targeting of the vascular system of solid tumours by photodynamic therapy (PDT). Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology 2004, 3, (8), 765-71.
85. Castano, A. P.; Mroz, P.; Hamblin, M. R., Photodynamic therapy and anti-tumour immunity. Nature reviews. Cancer 2006, 6, (7), 535-45.
86. Mroz, P.; Yaroslavsky, A.; Kharkwal, G. B.; Hamblin, M. R., Cell death pathways in photodynamic therapy of cancer. Cancers 2011, 3, (2), 2516-39.
87. Nowis, D.; Makowski, M.; Stoklosa, T.; Legat, M.; Issat, T.; Golab, J., Direct tumor damage mechanisms of photodynamic therapy. Acta biochimica Polonica 2005, 52, (2), 339-52.
88. Castano, A. P.; Demidova, T. N.; Hamblin, M. R., Mechanisms in photodynamic therapy: Part three—Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis and photodynamic therapy 2005, 2, (2), 91-106.
89. Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E. S.; Baehrecke, E. H.; Blagosklonny, M. V.; El-Deiry, W. S.; Golstein, P.; Green, D. R.; Hengartner, M.; Knight, R. A.; Kumar, S.; Lipton, S. A.; Malorni, W.; Nunez, G.; Peter, M. E.; Tschopp, J.; Yuan, J.; Piacentini, M.; Zhivotovsky, B.; Melino, G.; Nomenclature Committee on Cell, D., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell death and differentiation 2009, 16, (1), 3-11.
90. Soriano, J.; Villanueva, A.; Stockert, J. C.; Canete, M., Regulated necrosis in HeLa cells induced by ZnPc photodynamic treatment: a new nuclear morphology. International journal of molecular sciences 2014, 15, (12), 22772-85.
91. Zong, W. X.; Thompson, C. B., Necrotic death as a cell fate. Genes & development 2006, 20, (1), 1-15.
92. Oleinick, N. L.; Morris, R. L.; Belichenko, I., The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochemical & Photobiological Sciences 2002, 1, (1), 1-21.
93. Kessel, D.; Vicente, M. G.; Reiners, J. J., Jr., Initiation of apoptosis and autophagy by photodynamic therapy. Lasers in surgery and medicine 2006, 38, (5), 482-8.
94. Golstein, P.; Kroemer, G., Cell death by necrosis: towards a molecular definition. Trends in biochemical sciences 2007, 32, (1), 37-43.
95. Reiners, J. J., Jr.; Caruso, J. A.; Mathieu, P.; Chelladurai, B.; Yin, X. M.; Kessel, D., Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell death and differentiation 2002, 9, (9), 934-44.
96. Almeida, R. D.; Manadas, B. J.; Carvalho, A. P.; Duarte, C. B., Intracellular signaling mechanisms in photodynamic therapy. Biochimica et biophysica acta 2004, 1704, (2), 59-86.
97. Bittremieux, M.; Bultynck, G., p53 and Ca(2+) signaling from the endoplasmic reticulum: partners in anti-cancer therapies. Oncoscience 2015, 2, (3), 233-238.
98. Acedo, P.; Zawacka-Pankau, J., p53 family members - important messengers in cell death signaling in photodynamic therapy of cancer? Photochemical & Photobiological Sciences 2015, 14, (8), 1390-1396.
99. Giorgi, C.; Bonora, M.; Missiroli, S.; Poletti, F.; Ramirez, F. G.; Morciano, G.; Morganti, C.; Pandolfi, P. P.; Mammano, F.; Pinton, P., Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling. Oncotarget 2015, 6, (3), 1435-1445.
100. Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M., Angiogenesis in Cancer. Vascular Health and Risk Management 2006, 2, (3), 213-219.
101. Bhuvaneswari, R.; Gan, Y. Y.; Soo, K. C.; Olivo, M., The effect of photodynamic therapy on tumor angiogenesis. Cellular and molecular life sciences : CMLS 2009, 66, (14), 2275-83.
102. Fingar, V. H.; Wieman, T. J.; Wiehle, S. A.; Cerrito, P. B., The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion. Cancer research 1992, 52, (18), 4914-4921.
103. Kerdel, F. A.; Soter, N. A.; Lim, H. W., In vivo mediator release and degranulation of mast cells in hematoporphyrin derivative-induced phototoxicity in mice.
104. Henderson, B. W.; Fingar, V. H., Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse tumor. Cancer research 1987, 47, (12), 3110-3114.
105. Chen, B.; Pogue, B. W.; Luna, J. M.; Hardman, R. L.; Hoopes, P. J.; Hasan, T., Tumor vascular permeabilization by vascular-targeting photosensitization: effects, mechanism, and therapeutic implications. Clinical cancer research : an official journal of the American Association for Cancer Research 2006, 12, (3 Pt 1), 917-23.
106. Milla Sanabria, L.; Rodriguez, M. E.; Cogno, I. S.; Rumie Vittar, N. B.; Pansa, M. F.; Lamberti, M. J.; Rivarola, V. A., Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment. Biochimica et biophysica acta 2013, 1835, (1), 36-45.
107. Mroz, P.; Hashmi, J. T.; Huang, Y. Y.; Lange, N.; Hamblin, M. R., Stimulation of anti-tumor immunity by photodynamic therapy. Expert review of clinical immunology 2011, 7, (1), 75-91.
108. Cecic, I.; Korbelik, M., Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors. Cancer letters 2002, 183, (1), 43-51.
109. Korbelik, M.; Cecic, I., Complement activation cascade and its regulation: relevance for the response of solid tumors to photodynamic therapy. Journal of photochemistry and photobiology. B, Biology 2008, 93, (1), 53-9.
110. Korbelik, M.; Dougherty, G. J., Photodynamic therapy-mediated immune response against subcutaneous mouse tumors. Cancer research 1999, 59, (8), 1941-6.
111. Li, F.; Cheng, Y.; Lu, J.; Hu, R.; Wan, Q.; Feng, H., Photodynamic therapy boosts anti-glioma immunity in mice: a dependence on the activities of T cells and complement C3. Journal of cellular biochemistry 2011, 112, (10), 3035-43.
112. Ma, X.; Wang, Z., Anticancer drug discovery in the future: an evolutionary perspective. Drug discovery today 2009, 14, (23), 1136-1142.
113. Chang, C.-C.; Chen, W.-C.; Ho, T.-F.; Wu, H.-S.; Wei, Y.-H., Development of natural anti-tumor drugs by microorganisms. Journal of bioscience and bioengineering 2011, 111, (5), 501-511.
114. Siddik, Z. H., Mechanisms of Action of Cancer Chemotherapeutic Agents: DNA‐Interactive Alkylating Agents and Antitumour Platinum‐Based Drugs. The cancer handbook 2002.
115. Cairns, R.; Papandreou, I.; Denko, N., Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Molecular Cancer Research 2006, 4, (2), 61-70.
116. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews 2001, 46, (1-3), 3-26.
117. Avdeef, A., Physicochemical profiling (solubility, permeability and charge state). Current topics in medicinal chemistry 2001, 1, (4), 277-351.
118. Kobayashi, H.; Watanabe, R.; Choyke, P. L., Improving Conventional Enhanced Permeability and Retention (EPR) Effects; What Is the Appropriate Target? Theranostics 2014, 4, (1), 81-89.
119. Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S. K., Drug delivery systems: An updated review. International Journal of Pharmaceutical Investigation 2012, 2, (1), 2-11.
120. Paolino, D.; Sinha, P.; Fresta, M.; Ferrari, M., Drug delivery systems. Encyclopedia of medical devices and instrumentation.
121. Robinson, D. H.; Mauger, J. W., Drug delivery systems. American journal of hospital pharmacy 1991, 48, (10 Suppl 1), S14-23.
122. Olivo, M.; Bhuvaneswari, R.; Lucky, S. S.; Dendukuri, N.; Soo-Ping Thong, P., Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities. Pharmaceuticals 2010, 3, (5), 1507-1529.
123. Sharman, W., Targeted photodynamic therapy via receptor mediated delivery systems. Advanced drug delivery reviews 2004, 56, (1), 53-76.
124. Kozlowska, D.; Foran, P.; MacMahon, P.; Shelly, M. J.; Eustace, S.; O'Kennedy, R., Molecular and magnetic resonance imaging: The value of immunoliposomes. Advanced drug delivery reviews 2009, 61, (15), 1402-11.
125. Ormond, A. B.; Freeman, H. S., Dye sensitizers for photodynamic therapy. Materials 2013, 6, (3), 817-840.
126. Luo, C.; Sun, J.; Sun, B.; He, Z., Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends in pharmacological sciences 2014, 35, (11), 556-66.
127. Florence, A. T.; Hussain, N., Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Advanced drug delivery reviews 2001, 50 Suppl 1, S69-89.
128. Konan, Y. N.; Gurny, R.; Allémann, E., State of the art in the delivery of photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology 2002, 66, (2), 89-106.
129. Chakravarthi, S. S.; Robinson, D. H.; De, S., Nanoparticles prepared using natural and synthetic polymers. 2007.
130. Elzoghby, A. O.; Samy, W. M.; Elgindy, N. A., Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release 2012, 157, (2), 168-182.
131. Choi, K. Y.; Chung, H.; Min, K. H.; Yoon, H. Y.; Kim, K.; Park, J. H.; Kwon, I. C.; Jeong, S. Y., Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 2010, 31, (1), 106-114.
132. Sailaja, A.; Amareshwar, P.; Chakravarty, P., Different techniques used for the preparation of nanoparticles using natural polymers and their application.
133. Panyam, J.; Labhasetwar, V., Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced drug delivery reviews 2003, 55, (3), 329-347.
134. Gelperina, S.; Kisich, K.; Iseman, M. D.; Heifets, L., The Potential Advantages of Nanoparticle Drug Delivery Systems in Chemotherapy of Tuberculosis. American Journal of Respiratory and Critical Care Medicine 2005, 172, (12), 1487-1490.
135. Wang, J.; Xu, W.; Ding, J.; Lu, S.; Wang, X.; Wang, C.; Chen, X., Cholesterol-Enhanced Polylactide-Based Stereocomplex Micelle for Effective Delivery of Doxorubicin. Materials 2015, 8, (1), 216-230.
136. Li, D.; Ding, J. X.; Tang, Z. H.; Sun, H.; Zhuang, X. L.; Xu, J. Z.; Chen, X. S., In vitro evaluation of anticancer nanomedicines based on doxorubicin and amphiphilic Y-shaped copolymers. International journal of nanomedicine 2012, 7, 2687-97.
137. Li, D.; Sun, H.; Ding, J.; Tang, Z.; Zhang, Y.; Xu, W.; Zhuang, X.; Chen, X., Polymeric topology and composition constrained polyether-polyester micelles for directional antitumor drug delivery. Acta Biomater 2013, 9, (11), 8875-84.
138. Ding, J.; Li, D.; Zhuang, X.; Chen, X., Self-assemblies of pH-activatable PEGylated multiarm poly(lactic acid-co-glycolic acid)-doxorubicin prodrugs with improved long-term antitumor efficacies. Macromol Biosci 2013, 13, (10), 1300-7.
139. De Jong, W. H.; Borm, P. J. A., Drug delivery and nanoparticles: Applications and hazards. International journal of nanomedicine 2008, 3, (2), 133-149.
140. Kang, B.; Opatz, T.; Landfester, K.; Wurm, F. R., Carbohydrate nanocarriers in biomedical applications: functionalization and construction. Chemical Society reviews 2015, 44, (22), 8301-8325.
141. Joung, Y. K.; Jang, J. Y.; Choi, J. H.; Han, D. K.; Park, K. D., Heparin-Conjugated Pluronic Nanogels as Multi-Drug Nanocarriers for Combination Chemotherapy. Molecular Pharmaceutics 2013, 10, (2), 685-693.
142. Saravanakumar, G.; Jo, D. G.; Park, J. H., Polysaccharide-Based Nanoparticles: A Versatile Platform for Drug Delivery and Biomedical Imaging. Current medicinal chemistry 2012, 19, (19), 3212-3229.
143. Zhu, J., Bioactive Modification of Poly(ethylene glycol) Hydrogels for Tissue Engineering. Biomaterials 2010, 31, (17), 4639-4656.
144. Mitragotri, S.; Stayton, P., Organic nanoparticles for drug delivery and imaging. MRS Bulletin 2014, 39, (03), 219-223.
145. López-Dávila, V.; Seifalian, A. M.; Loizidou, M., Organic nanocarriers for cancer drug delivery. Current Opinion in Pharmacology 2012, 12, (4), 414-419.
146. Zhang, N.; Wardwell, P. R.; Bader, R. A., Polysaccharide-Based Micelles for Drug Delivery. Pharmaceutics 2013, 5, (2), 329-352.
147. Leung, M. Y. K.; Liu, C.; Koon, J. C. M.; Fung, K. P., Polysaccharide biological response modifiers. Immunology Letters 2006, 105, (2), 101-114.
148. Aspinall, G. O., The polysaccharides. Academic Press: 2014; Vol. 2.
149. Miller, T.; Goude, M. C.; McDevitt, T. C.; Temenoff, J. S., Molecular engineering of glycosaminoglycan chemistry for biomolecule delivery. Acta Biomaterialia 2014, 10, (4), 1705-1719.
150. Drogoz, A.; David, L.; Rochas, C.; Domard, A.; Delair, T., Polyelectrolyte complexes from polysaccharides: formation and stoichiometry monitoring. Langmuir 2007, 23, (22), 10950-8.
151. Posocco, B.; Dreussi, E.; de Santa, J.; Toffoli, G.; Abrami, M.; Musiani, F.; Grassi, M.; Farra, R.; Tonon, F.; Grassi, G.; Dapas, B., Polysaccharides for the Delivery of Antitumor Drugs. Materials 2015, 8, (5), 2569.
152. Debele, T. A.; Mekuria, S. L.; Tsai, H.-C., Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. Materials Science and Engineering: C 2016, 68, 964-981.
153. Li, L.; Moon, H. T.; Park, J.-Y.; Heo, Y. J.; Choi, Y.; Tran, T. H.; Lee, Y.-k.; Kim, S. Y.; Huh, K. M., Heparin-based self-assembled nanoparticles for photodynamic therapy. Macromolecular Research 2011, 19, (5), 487-494.
154. Huang, L.; Kerns, R. J., Diversity-oriented chemical modification of heparin: Identification of charge-reduced N-acyl heparin derivatives having increased selectivity for heparin-binding proteins. Bioorganic & medicinal chemistry 2006, 14, (7), 2300-13.
155. Mousa, S. A.; Petersen, L. J., Anti-cancer properties of low-molecular-weight heparin: preclinical evidence. Thrombosis and haemostasis 2009, 102, (2), 258-67.
156. Norrby, K., Heparin and angiogenesis: a low-molecular-weight fraction inhibits and a high-molecular-weight fraction stimulates angiogenesis systemically. Pathophysiology of Haemostasis and Thrombosis 1993, 23, (Suppl. 1), 141-149.
157. Ritchie, J. P.; Ramani, V. C.; Ren, Y.; Naggi, A.; Torri, G.; Casu, B.; Penco, S.; Pisano, C.; Carminati, P.; Tortoreto, M.; Zunino, F.; Vlodavsky, I.; Sanderson, R. D.; Yang, Y., SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clinical cancer research : an official journal of the American Association for Cancer Research 2011, 17, (6), 1382-1393.
158. Sasisekharan, R.; Shriver, Z.; Venkataraman, G.; Narayanasami, U., Roles of heparan-sulphate glycosaminoglycans in cancer. Nature reviews. Cancer 2002, 2, (7), 521-528.
159. Koenig, A.; Norgard-Sumnicht, K.; Linhardt, R.; Varki, A., Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. Journal of Clinical Investigation 1998, 101, (4), 877-889.
160. Vlodavsky, I.; Ilan, N.; Nadir, Y.; Brenner, B.; Katz, B.-Z.; Naggi, A.; Torri, G.; Casu, B.; Sasisekharan, R., Heparanase, heparin and the coagulation system in cancer progression. Thrombosis Research 2007, 120, Supplement 2, S112-S120.
161. Borsig, L.; Wong, R.; Feramisco, J.; Nadeau, D. R.; Varki, N. M.; Varki, A., Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, (6), 3352-3357.
162. Vlodavsky, I.; Beckhove, P.; Lerner, I.; Pisano, C.; Meirovitz, A.; Ilan, N.; Elkin, M., Significance of Heparanase in Cancer and Inflammation. Cancer Microenvironment 2012, 5, (2), 115-132.
163. Parish, C. R.; Freeman, C.; Hulett, M. D., Heparanase: a key enzyme involved in cell invasion. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2001, 1471, (3), M99-M108.
164. Ilan, N.; Elkin, M.; Vlodavsky, I., Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. The International Journal of Biochemistry & Cell Biology 2006, 38, (12), 2018-2039.
165. Stevenson, J. L.; Varki, A.; Borsig, L., Heparin attenuates metastasis mainly due to inhibition of P- and L-selectin, but non-anticoagulant heparins can have additional effects. Thrombosis Research 2007, 120, Supplement 2, S107-S111.
166. Yagi, H.; Miyamoto, S.; Tanaka, Y.; Sonoda, K.; Kobayashi, H.; Kishikawa, T.; Iwamoto, R.; Mekada, E.; Nakano, H., Clinical significance of heparin-binding epidermal growth factor-like growth factor in peritoneal fluid of ovarian cancer. British Journal of Cancer 2005, 92, (9), 1737-1745.
167. Xu, Z.; Shen, G.; Xia, X.; Zhao, X.; Zhang, P.; Wu, H.; Guo, Q.; Qian, Z.; Wei, Y.; Liang, S., Comparisons of three polyethyleneimine-derived nanoparticles as a gene therapy delivery system for renal cell carcinoma. Journal of translational medicine 2011, 9, 46-46.
168. Yang, X.; Du, H.; Liu, J.; Zhai, G., Advanced Nanocarriers Based on Heparin and Its Derivatives for Cancer Management. Biomacromolecules 2015, 16, (2), 423-436.
169. Jee, K. S.; Park, H. D.; Park, K. D.; Kim, Y. H.; Shin, J.-W., Heparin conjugated polylactide as a blood compatible material. Biomacromolecules 2004, 5, (5), 1877-1881.
170. Guo, W.; Lee, R. J., Receptor-targeted gene delivery viafolate-conjugated polyethylenimine. AAPS PharmSci 1999, 1, (4), 20-26.
171. Weiss, S. I.; Sieverling, N.; Niclasen, M.; Maucksch, C.; Thunemann, A. F.; Mohwald, H.; Reinhardt, D.; Rosenecker, J.; Rudolph, C., Uronic acids functionalized polyethyleneimine (PEI)-polyethyleneglycol (PEG)-graft-copolymers as novel synthetic gene carriers. Biomaterials 2006, 27, (10), 2302-12.
172. Jiang, G.; Park, K.; Kim, J.; Kim, K. S.; Oh, E. J.; Kang, H.; Han, S. E.; Oh, Y. K.; Park, T. G.; Kwang Hahn, S., Hyaluronic acid–polyethyleneimine conjugate for target specific intracellular delivery of siRNA. Biopolymers 2008, 89, (7), 635-642.
173. Park, K.; Kim, K.; Kwon, I. C.; Kim, S. K.; Lee, S.; Lee, D. Y.; Byun, Y., Preparation and Characterization of Self-Assembled Nanoparticles of Heparin-Deoxycholic Acid Conjugates. Langmuir 2004, 20, (26), 11726-11731.
174. Nagpal, K.; Singh, S. K.; Mishra, D. N., Chitosan nanoparticles: a promising system in novel drug delivery. Chemical & pharmaceutical bulletin 2010, 58, (11), 1423-30.
175. Sinha, V. R.; Singla, A. K.; Wadhawan, S.; Kaushik, R.; Kumria, R.; Bansal, K.; Dhawan, S., Chitosan microspheres as a potential carrier for drugs. International Journal of Pharmaceutics 2004, 274, (1–2), 1-33.
176. Grenha, A., Chitosan nanoparticles: a survey of preparation methods. Journal of drug targeting 2012, 20, (4), 291-300.
177. He, P.; Davis, S. S.; Illum, L., In vitro evaluation of the mucoadhesive properties of chitosan microspheres. International Journal of Pharmaceutics 1998, 166, (1), 75-88.
178. Sogias, I. A.; Williams, A. C.; Khutoryanskiy, V. V., Why is Chitosan Mucoadhesive? Biomacromolecules 2008, 9, (7), 1837-1842.
179. Mero, A.; Campisi, M., Hyaluronic Acid Bioconjugates for the Delivery of Bioactive Molecules. Polymers 2014, 6, (2), 346-369.
180. Prestwich, G. D., Hyaluronic Acid-Based Clinical Biomaterials Derived for Cell and Molecule Delivery in Regenerative Medicine. Journal of controlled release : official journal of the Controlled Release Society 2011, 155, (2), 193-199.
181. Laurent, T. C.; Fraser, J., Hyaluronan. The FASEB Journal 1992, 6, (7), 2397-2404.
182. Liao, Y.-H.; Jones, S. A.; Forbes, B.; Martin, G. P.; Brown, M. B., Hyaluronan: Pharmaceutical Characterization and Drug Delivery. Drug Delivery 2005, 12, (6), 327-342.
183. Toole, B. P., Hyaluronan: from extracellular glue to pericellular cue. Nature reviews. Cancer 2004, 4, (7), 528-539.
184. Burdick, J. A.; Prestwich, G. D., Hyaluronic acid hydrogels for biomedical applications. Advanced materials 2011, 23, (12), H41-H56.
185. Galus, R.; Antiszko, M.; Wlodarski, P., [Clinical applications of hyaluronic acid]. Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego 2006, 20, (119), 606-8.
186. Williams, D. L.; Mann, B. K., Efficacy of a Crosslinked Hyaluronic Acid-Based Hydrogel as a Tear Film Supplement: A Masked Controlled Study. PLoS One 2014, 9, (6), e99766.
187. Evanko, S. P.; Parks, W. T.; Wight, T. N., Intracellular hyaluronan in arterial smooth muscle cells: association with microtubules, RHAMM, and the mitotic spindle. Journal of Histochemistry & Cytochemistry 2004, 52, (12), 1525-1535.
188. Chen, S. H.; Chen, C. H.; Shalumon, K.; Chen, J. P., Preparation and characterization of antiadhesion barrier film from hyaluronic acid-grafted electrospun poly(caprolactone) nanofibrous membranes for prevention of flexor tendon postoperative peritendinous adhesion. International journal of nanomedicine 2014, 9, 4079-92.
189. Moseley, R.; Walker, M.; Waddington, R.; Chen, W., Comparison of the antioxidant properties of wound dressing materials–carboxymethylcellulose, hyaluronan benzyl ester and hyaluronan, towards polymorphonuclear leukocyte-derived reactive oxygen species. Biomaterials 2003, 24, (9), 1549-1557.
190. Evanich, J. D.; Evanich, C. J.; Wright, M. B.; Rydlewicz, J. A., Efficacy of intraarticular hyaluronic acid injections in knee osteoarthritis. Clinical orthopaedics and related research 2001, 390, 173-181.
191. Schanté, C. E.; Zuber, G.; Herlin, C.; Vandamme, T. F., Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydrate polymers 2011, 85, (3), 469-489.
192. Glenn, D. P.; Jing-wen, K., Chemically-Modified HA for Therapy and Regenerative Medicine. Current pharmaceutical biotechnology 2008, 9, (4), 242-245.
193. Burdick, J. A.; Prestwich, G. D., Hyaluronic Acid Hydrogels for Biomedical Applications. Advanced materials (Deerfield Beach, Fla.) 2011, 23, (12), H41-H56.
194. Rachid, M.; Pamela, K.; Tobias, N.; Irina, N.; Markus, W. B.; Margot, Z., CD44 and EpCAM: Cancer-Initiating Cell Markers. Current Molecular Medicine 2008, 8, (8), 784-804.
195. Tripodo, G.; Trapani, A.; Torre, M. L.; Giammona, G.; Trapani, G.; Mandracchia, D., Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges. European Journal of Pharmaceutics and Biopharmaceutics 2015, 97, Part B, 400-416.
196. d’Ayala, G. G.; Malinconico, M.; Laurienzo, P., Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 2008, 13, (9), 2069-2106.
197. George, M.; Abraham, T. E., Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan — a review. Journal of Controlled Release 2006, 114, (1), 1-14.
198. Pawar, S. N.; Edgar, K. J., Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 2012, 33, (11), 3279-3305.
199. Leonard, M.; De Boisseson, M. R.; Hubert, P.; Dalençon, F.; Dellacherie, E., Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties. Journal of Controlled Release 2004, 98, (3), 395-405.
200. Vallée, F.; Müller, C.; Durand, A.; Schimchowitsch, S.; Dellacherie, E.; Kelche, C.; Cassel, J. C.; Leonard, M., Synthesis and rheological properties of hydrogels based on amphiphilic alginate-amide derivatives. Carbohydrate research 2009, 344, (2), 223-228.
201. Lee, K. Y.; Mooney, D. J., Alginate: properties and biomedical applications. Progress in polymer science 2012, 37, (1), 106-126.
202. Sarika, P. R.; Anil Kumar, P. R.; Raj, D. K.; James, N. R., Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization. Carbohydrate polymers 2015, 119, 118-125.
203. Kuo, C. K.; Ma, P. X., Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 2001, 22, (6), 511-521.
204. LeRoux, M. A.; Guilak, F.; Setton, L. A., Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration. Journal of biomedical materials research 1999, 47, (1), 46-53.
205. De Santis, S.; Diociaiuti, M.; Cametti, C.; Masci, G., Hyaluronic acid and alginate covalent nanogels by template cross-linking in polyion complex micelle nanoreactors. Carbohydrate polymers 2014, 101, 96-103.
206. Gaur, R.; Singh, R.; Gupta, M.; Gaur, M. K., Aureobasidium pullulans, an economically important polymorphic yeast with special reference to pullulan. African journal of biotechnology 2015, 9, (47), 7989-7997.
207. Miyahara, T.; Nyan, M.; Shimoda, A.; Yamamoto, Y.; Kuroda, S.; Shiota, M.; Akiyoshi, K.; Kasugai, S., Exploitation of a novel polysaccharide nanogel cross-linking membrane for guided bone regeneration (GBR). Journal of Tissue Engineering and Regenerative Medicine 2012, 6, (8), 666-672.
208. Kobayashi, H.; Katakura, O.; Morimoto, N.; Akiyoshi, K.; Kasugai, S., Effects of cholesterol‐bearing pullulan (CHP)‐nanogels in combination with prostaglandin E1 on wound healing. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2009, 91, (1), 55-60.
209. Coviello, T.; Matricardi, P.; Marianecci, C.; Alhaique, F., Polysaccharide hydrogels for modified release formulations. Journal of Controlled Release 2007, 119, (1), 5-24.
210. Singh, R. S.; Kaur, N.; Kennedy, J. F., Pullulan and pullulan derivatives as promising biomolecules for drug and gene targeting. Carbohydrate polymers 2015, 123, 190-207.
211. Fujioka-Kobayashi, M.; Ota, M. S.; Shimoda, A.; Nakahama, K.-i.; Akiyoshi, K.; Miyamoto, Y.; Iseki, S., Cholesteryl group- and acryloyl group-bearing pullulan nanogel to deliver BMP2 and FGF18 for bone tissue engineering. Biomaterials 2012, 33, (30), 7613-7620.
212. Sriamornsak, P., Chemistry of pectin and its pharmaceutical uses: A review. Silpakorn University International Journal 2003, 3, (1-2), 206-228.
213. Voragen, A. G. J.; Coenen, G.-J.; Verhoef, R. P.; Schols, H. A., Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry 2009, 20, (2), 263-275.
214. Yapo, B. M.; Lerouge, P.; Thibault, J.-F.; Ralet, M.-C., Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohydrate polymers 2007, 69, (3), 426-435.
215. Bhatia, M. S.; Deshmukh, R.; Choudhari, P.; Bhatia, N. M., Chemical modification of pectins, characterization and evaluation for drug delivery. Scientia Pharmaceutica 2008, 76, (4), 775.
216. Chen, J.; Liu, W.; Liu, C.-M.; Li, T.; Liang, R.-H.; Luo, S.-J., Pectin Modifications: A Review. Critical Reviews in Food Science and Nutrition 2015, 55, (12), 1684-1698.
217. Igarashi, N.; Takeguchi, A.; Sakai, S.; Akiyama, H.; Higashi, K.; Toida, T., Effect of Molecular Sizes of Chondroitin Sulfate on Interaction with L-Selectin. International Journal of Carbohydrate Chemistry 2013, 2013, 9.
218. Shi, Y.-g.; Meng, Y.-c.; Li, J.-r.; Chen, J.; Liu, Y.-h.; Bai, X., Chondroitin sulfate: extraction, purification, microbial and chemical synthesis. Journal of Chemical Technology & Biotechnology 2014, 89, (10), 1445-1465.
219. Egea, J.; García, A. G.; Verges, J.; Montell, E.; López, M. G., Antioxidant, antiinflammatory and neuroprotective actions of chondroitin sulfate and proteoglycans. Osteoarthritis and Cartilage 2010, 18, Supplement 1, S24-S27.
220. Campo, G. M.; Avenoso, A.; Campo, S.; Ferlazzo, A. M.; Calatroni, A., Antioxidant Activity of Chondroitin Sulfate. In Advances in Pharmacology, Academic Press: 2006; Vol. Volume 53, pp 417-431.
221. Uebelhart, D., Clinical review of chondroitin sulfate in osteoarthritis. Osteoarthritis and Cartilage 2008, 16, Supplement 3, S19-S21.
222. Zhang, W.; Nuki, G.; Moskowitz, R. W.; Abramson, S.; Altman, R. D.; Arden, N. K.; Bierma-Zeinstra, S.; Brandt, K. D.; Croft, P.; Doherty, M.; Dougados, M.; Hochberg, M.; Hunter, D. J.; Kwoh, K.; Lohmander, L. S.; Tugwell, P., OARSI recommendations for the management of hip and knee osteoarthritis: Part III: changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis and Cartilage 2010, 18, (4), 476-499.
223. Jordan, K.; Arden, N.; Doherty, M.; Bannwarth, B.; Bijlsma, J.; Dieppe, P.; Gunther, K.; Hauselmann, H.; Herrero-Beaumont, G.; Kaklamanis, P.; Lohmander, S.; Leeb, B.; Lequesne, M.; Mazieres, B.; Martin-Mola, E.; Pavelka, K.; Pendleton, A.; Punzi, L.; Serni, U.; Swoboda, B.; Verbruggen, G.; Zimmerman-Gorska, I.; Dougados, M., EULAR Recommendations 2003: an evidence based approach to the management of knee osteoarthritis: Report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Annals of the Rheumatic Diseases 2003, 62, (12), 1145-1155.
224. Huang, S.-J.; Sun, S.-L.; Feng, T.-H.; Sung, K.-H.; Lui, W.-L.; Wang, L.-F., Folate-mediated chondroitin sulfate-Pluronic® 127 nanogels as a drug carrier. European Journal of Pharmaceutical Sciences 2009, 38, (1), 64-73.
225. Kamel, S.; Ali, N.; Jahangir, K.; Shah, S. M.; El-Gendy, A. A., Pharmaceutical significance of cellulose: a review. Express Polym Lett 2008, 2, (11), 758-778.
226. Abeer, M. M.; Amin, M.; Iqbal, M. C.; Martin, C., A review of bacterial cellulose‐based drug delivery systems: their biochemistry, current approaches and future prospects. Journal of Pharmacy and Pharmacology 2014, 66, (8), 1047-1061.
227. Wu, L.; Zhou, H.; Sun, H.-J.; Zhao, Y.; Yang, X.; Cheng, S. Z. D.; Yang, G., Thermoresponsive Bacterial Cellulose Whisker/Poly(NIPAM-co-BMA) Nanogel Complexes: Synthesis, Characterization, and Biological Evaluation. Biomacromolecules 2013, 14, (4), 1078-1084.
228. Tan, J.; Kang, H.; Liu, R.; Wang, D.; Jin, X.; Li, Q.; Huang, Y., Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polymer Chemistry 2011, 2, (3), 672-678.
229. Li, Z.; Xu, W.; Zhang, C.; Chen, Y.; Li, B., Self-assembled lysozyme/carboxymethylcellulose nanogels for delivery of methotrexate. International Journal of Biological Macromolecules 2015, 75, 166-172.
230. Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z., Polysaccharides-based nanoparticles as drug delivery systems. Advanced drug delivery reviews 2008, 60, (15), 1650-1662.
231. Mizrahy, S.; Peer, D., Polysaccharides as building blocks for nanotherapeutics. Chemical Society reviews 2012, 41, (7), 2623-2640.
232. Lu, X.; Gao, H.; Li, C.; Yang, Y.-W.; Wang, Y.; Fan, Y.; Wu, G.; Ma, J., Polyelectrolyte complex nanoparticles of amino poly(glycerol methacrylate)s and insulin. International Journal of Pharmaceutics 2012, 423, (2), 195-201.
233. Sarika, P. R.; Pavithran, A.; James, N. R., Cationized gelatin/gum arabic polyelectrolyte complex: Study of electrostatic interactions. Food Hydrocolloids 2015, 49, 176-182.
234. Rolland, J.; Guillet, P.; Schumers, J. M.; Duhem, N.; Préat, V.; Gohy, J. F., Polyelectrolyte complex nanoparticles from chitosan and poly (acrylic acid) and Polystyrene‐block‐poly (acrylic acid). Journal of Polymer Science Part A: Polymer Chemistry 2012, 50, (21), 4484-4493.
235. Fredheim, G. E.; Christensen, B. E., Polyelectrolyte Complexes:  Interactions between Lignosulfonate and Chitosan. Biomacromolecules 2003, 4, (2), 232-239.
236. Berger, J.; Reist, M.; Mayer, J. M.; Felt, O.; Peppas, N. A.; Gurny, R., Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics 2004, 57, (1), 19-34.
237. Boddohi, S.; Moore, N.; Johnson, P. A.; Kipper, M. J., Polysaccharide-Based Polyelectrolyte Complex Nanoparticles from Chitosan, Heparin, and Hyaluronan. Biomacromolecules 2009, 10, (6), 1402-1409.
238. Maciel, V. B. V.; Yoshida, C. M. P.; Franco, T. T., Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydrate polymers 2015, 132, 537-545.
239. Etrych, T.; Leclercq, L.; Boustta, M.; Vert, M., Polyelectrolyte complex formation and stability when mixing polyanions and polycations in salted media: A model study related to the case of body fluids. European Journal of Pharmaceutical Sciences 2005, 25, (2–3), 281-288.
240. Hamman, J. H., Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems. Marine Drugs 2010, 8, (4), 1305-1322.
241. Rodell, C. B.; Mealy, J. E.; Burdick, J. A., Supramolecular Guest–Host Interactions for the Preparation of Biomedical Materials. Bioconjugate Chemistry 2015, 26, (12), 2279-2289.
242. Ozin, G. A.; Hou, K.; Lotsch, B. V.; Cademartiri, L.; Puzzo, D. P.; Scotognella, F.; Ghadimi, A.; Thomson, J., Nanofabrication by self-assembly. Materials Today 2009, 12, (5), 12-23.
243. Myrick, J. M.; Vendra, V. K.; Krishnan, S., Self-assembled polysaccharide nanostructures for controlled-release applications. Nanotechnology Reviews 2014, 3, (4), 319-346.
244. Allen, C.; Yu, Y.; Maysinger, D.; Eisenberg, A., Polycaprolactone-b-poly(ethylene Oxide) Block Copolymer Micelles as a Novel Drug Delivery Vehicle for Neurotrophic Agents FK506 and L-685,818. Bioconjugate Chemistry 1998, 9, (5), 564-572.
245. Wen, Y.; Oh, J. K., Recent Strategies to Develop Polysaccharide‐Based Nanomaterials for Biomedical Applications. Macromolecular rapid communications 2014, 35, (21), 1819-1832.
246. Mendes, A. C.; Baran, E. T.; Reis, R. L.; Azevedo, H. S., Self‐assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2013, 5, (6), 582-612.
247. Nitta, S. K.; Numata, K., Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering. International journal of molecular sciences 2013, 14, (1), 1629-1654.
248. Zhang, X.; Malhotra, S.; Molina, M.; Haag, R., Micro- and nanogels with labile crosslinks - from synthesis to biomedical applications. Chemical Society reviews 2015, 44, (7), 1948-1973.
249. Jameela, S.; Jayakrishnan, A., Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 1995, 16, (10), 769-775.
250. Schiffman, J. D.; Schauer, C. L., Cross-Linking Chitosan Nanofibers. Biomacromolecules 2007, 8, (2), 594-601.
251. Migneault, I.; Dartiguenave, C.; Bertrand, M. J.; Waldron, K. C., Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 2004, 37, (5), 790-806.
252. Park, S.-N.; Park, J.-C.; Kim, H. O.; Song, M. J.; Suh, H., Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials 2002, 23, (4), 1205-1212.
253. Bodnar, M.; Hartmann, J. F.; Borbely, J., Preparation and Characterization of Chitosan-Based Nanoparticles. Biomacromolecules 2005, 6, (5), 2521-2527.
254. Vauthier, C.; Bouchemal, K., Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 2009, 26, (5), 1025-1058.
255. Kumari, A.; Yadav, S. K.; Yadav, S. C., Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces 2010, 75, (1), 1-18.
256. Janes, K.; Calvo, P.; Alonso, M., Polysaccharide colloidal particles as delivery systems for macromolecules. Advanced drug delivery reviews 2001, 47, (1), 83-97.
257. Jătariu, A. N.; Popa, M.; Curteanu, S.; Peptu, C. A., Covalent and ionic co-cross-linking—An original way to prepare chitosan–gelatin hydrogels for biomedical applications. Journal of Biomedical Materials Research Part A 2011, 98A, (3), 342-350.
258. Alvarez-Lorenzo, C.; Blanco-Fernandez, B.; Puga, A. M.; Concheiro, A., Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Advanced drug delivery reviews 2013, 65, (9), 1148-1171.
259. Gan, Q.; Wang, T.; Cochrane, C.; McCarron, P., Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids and Surfaces B: Biointerfaces 2005, 44, (2–3), 65-73.
260. Ma, Z.; Yeoh, H. H.; Lim, L.-Y., Formulation pH modulates the interaction of insulin with chitosan nanoparticles. Journal of pharmaceutical sciences 2002, 91, (6), 1396-1404.
261. Tsai, M. L.; Bai, S. W.; Chen, R. H., Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan–sodium tripolyphosphate nanoparticle. Carbohydrate polymers 2008, 71, (3), 448-457.
262. Oh, J. K.; Drumright, R.; Siegwart, D. J.; Matyjaszewski, K., The development of microgels/nanogels for drug delivery applications. Progress in Polymer Science 2008, 33, (4), 448-477.
263. Soni, G.; Yadav, K. S., Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art. Saudi Pharmaceutical Journal 2014.
264. Ho, Y. C.; Mi, F. L.; Sung, H. W.; Kuo, P. L., Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor. Int J Pharm 2009, 376, (1-2), 69-75.
265. Debele, T. A.; Mekuria, S. L.; Lin, S.-Y.; Tsai, H.-C., Synthesis and characterization of bioreducible heparin-polyethyleneimine nanogels: application as imaging-guided photosensitizer delivery vehicle in photodynamic therapy. RSC Advances 2016.
266. Ahmed, E. M., Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research 2015, 6, (2), 105-121.
267. Hoare, T. R.; Kohane, D. S., Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49, (8), 1993-2007.
268. Mathur, A. M.; Moorjani, S. K.; Scranton, A. B., Methods for Synthesis of Hydrogel Networks: A Review. Journal of Macromolecular Science, Part C 1996, 36, (2), 405-430.
269. Chacko, R. T.; Ventura, J.; Zhuang, J.; Thayumanavan, S., Polymer nanogels: A versatile nanoscopic drug delivery platform. Advanced drug delivery reviews 2012, 64, (9), 836-851.
270. Lin, N.; Huang, J.; Dufresne, A., Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 2012, 4, (11), 3274-3294.
271. Bhattarai, N.; Gunn, J.; Zhang, M., Chitosan-based hydrogels for controlled, localized drug delivery. Advanced drug delivery reviews 2010, 62, (1), 83-99.
272. van Nostrum, C. F., Polymeric micelles to deliver photosensitizers for photodynamic therapy. Advanced drug delivery reviews 2004, 56, (1), 9-16.
273. Kulkarni, P. R.; Vaidya, K. A., Liposomes: a novel drug delivery system. Int J Curr Pharm Res 3, (2), 10-18.
274. Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H.-B., Polymeric micelles as drug delivery vehicles. RSC Advances 2014, 4, (33), 17028.
275. Chiang, Y.-T.; Cheng, Y.-T.; Lu, C.-Y.; Yen, Y.-W.; Yu, L.-Y.; Yu, K.-S.; Lyu, S.-Y.; Yang, C.-Y.; Lo, C.-L., Polymer–Liposome Complexes with a Functional Hydrogen-Bond Cross-Linker for Preventing Protein Adsorption and Improving Tumor Accumulation. Chemistry of Materials 2013, 25, (21), 4364-4372.
276. Gill, K. K.; Kaddoumi, A.; Nazzal, S., Mixed micelles of PEG(2000)-DSPE and vitamin-E TPGS for concurrent delivery of paclitaxel and parthenolide: enhanced chemosenstization and antitumor efficacy against non-small cell lung cancer (NSCLC) cell lines. Eur J Pharm Sci 2012, 46, (1-2), 64-71.
277. Gill, K. K.; Nazzal, S.; Kaddoumi, A., Paclitaxel loaded PEG(5000)-DSPE micelles as pulmonary delivery platform: formulation characterization, tissue distribution, plasma pharmacokinetics, and toxicological evaluation. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 2011, 79, (2), 276-84.
278. Kale, A. A.; Torchilin, V. P., Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the ph stability of PEG-PE conjugates. Bioconjug Chem 2007, 18, (2), 363-70.
279. Karanth, H.; Murthy, R. S., pH-sensitive liposomes--principle and application in cancer therapy. J Pharm Pharmacol 2007, 59, (4), 469-83.
280. Ziebarth, J.; Wang, Y., Molecular Dynamics Simulations of DNA-Polycation Complex Formation. Biophysical Journal 2009, 97, (7), 1971-1983.
281. Choudhury, C. K.; Roy, S., Structural and dynamical properties of polyethylenimine in explicit water at different protonation states: a molecular dynamics study. Soft Matter 2013, 9, (7), 2269-2281.
282. Sun, C.; Tang, T.; Uludağ, H.; Cuervo, Javier E., Molecular Dynamics Simulations of DNA/PEI Complexes: Effect of PEI Branching and Protonation State. Biophysical Journal 2011, 100, (11), 2754-2763.
283. Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, (16), 7297-7301.
284. Jager, M.; Schubert, S.; Ochrimenko, S.; Fischer, D.; Schubert, U. S., Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chemical Society reviews 2012, 41, (13), 4755-4767.
285. Varkouhi, A. K.; Scholte, M.; Storm, G.; Haisma, H. J., Endosomal escape pathways for delivery of biologicals. Journal of controlled release : official journal of the Controlled Release Society 2011, 151, (3), 220-8.
286. Pastor‐Pérez, L.; Chen, Y.; Shen, Z.; Lahoz, A.; Stiriba, S. E., Unprecedented Blue Intrinsic Photoluminescence from Hyperbranched and Linear Polyethylenimines: Polymer Architectures and pH‐Effects. Macromolecular rapid communications 2007, 28, (13), 1404-1409.
287. Zhang, J.; Fang, D.; Ma, Q.; He, Z.; Ren, K.; Zhou, R.; Zeng, S.; Li, B.; He, L.; He, G.; Song, X., Dual-Functional PEI–Poly(γ-Cholesterol-l-Glutamate) Copolymer for Drug/Gene Co-delivery. Macromolecular Chemistry and Physics 2014, 215, (2), 163-170.
288. Bellettini, I. C.; Nandi, L. G.; Eising, R.; Domingos, J. B.; Machado, V. G.; Minatti, E., Properties of aqueous solutions of hydrophobically modified polyethylene imines in the absence and presence of sodium dodecylsulfate. Journal of Colloid and Interface Science 2012, 370, (1), 94-101.
289. Sun, Y.; Cao, W.; Li, S.; Jin, S.; Hu, K.; Hu, L.; Huang, Y.; Gao, X.; Wu, Y.; Liang, X.-J., Ultrabright and multicolorful fluorescence of amphiphilic polyethyleneimine polymer dots for efficiently combined imaging and therapy. Scientific reports 2013, 3.
290. Sobczuk, A. A.; Tamaru, S.-i.; Shinkai, S., New strategy for controlling the oligothiophene aggregation mode utilizing the gel-to-sol phase transition induced by crown-alkali metal interactions. Chemical communications 2011, 47, (11), 3093-3095.
291. Wu, W.; Yao, W.; Wang, X.; Xie, C.; Zhang, J.; Jiang, X., Bioreducible heparin-based nanogel drug delivery system. Biomaterials 2015, 39, 260-8.
292. Gollmer, A.; Arnbjerg, J.; Blaikie, F. H.; Pedersen, B. W.; Breitenbach, T.; Daasbjerg, K.; Glasius, M.; Ogilby, P. R., Singlet Oxygen Sensor Green®: photochemical behavior in solution and in a mammalian cell. Photochemistry and photobiology 2011, 87, (3), 671-679.
293. Li, L.; Bae, B.-c.; Tran, T. H.; Yoon, K. H.; Na, K.; Huh, K. M., Self-quenchable biofunctional nanoparticles of heparin–folate-photosensitizer conjugates for photodynamic therapy. Carbohydrate polymers 2011, 86, (2), 708-715.
294. Ma, X.; Sreejith, S.; Zhao, Y., Spacer intercalated disassembly and photodynamic activity of zinc phthalocyanine inside nanochannels of mesoporous silica nanoparticles. ACS applied materials & interfaces 2013, 5, (24), 12860-12868.
295. Jorpes, E., The chemistry of heparin. Biochemical Journal 1935, 29, (8), 1817-1830.
296. Liu, H.; Zhang, Z.; Linhardt, R. J., Lessons learned from the contamination of heparin. Natural product reports 2009, 26, (3), 313-21.
297. Jones, M.-C.; Ranger, M.; Leroux, J.-C., pH-Sensitive Unimolecular Polymeric Micelles:  Synthesis of a Novel Drug Carrier. Bioconjugate Chemistry 2003, 14, (4), 774-781.
298. Luo, L.; Ranger, M.; Lessard, D. G.; Le Garrec, D.; Gori, S.; Leroux, J.-C.; Rimmer, S.; Smith, D., Novel Amphiphilic Diblock Copolymer of Low Molecular Weight Poly(N-vinylpyrrolidone)-block-poly(d,l-lactide): Synthesis, Characterization, and Micellization. Macromolecules 2004, 37, (11), 4008-4013.
299. Sun, Y.; Cao, W.; Li, S.; Jin, S.; Hu, K.; Hu, L.; Huang, Y.; Gao, X.; Wu, Y.; Liang, X.-J., Ultrabright and Multicolorful Fluorescence of Amphiphilic Polyethyleneimine Polymer Dots for Efficiently Combined Imaging and Therapy. Scientific Reports 2013, 3, 3036.
300. Wang, M.; Zhang, D.; Zhang, G.; Zhu, D., The convenient fluorescence turn-on detection of heparin with a silole derivative featuring an ammonium group. Chemical communications 2008, (37), 4469-4471.
301. Liu, J.; Zhong, Y.; Lam, J. W. Y.; Lu, P.; Hong, Y.; Yu, Y.; Yue, Y.; Faisal, M.; Sung, H. H. Y.; Williams, I. D.; Wong, K. S.; Tang, B. Z., Hyperbranched Conjugated Polysiloles: Synthesis, Structure, Aggregation-Enhanced Emission, Multicolor Fluorescent Photopatterning, and Superamplified Detection of Explosives. Macromolecules 2010, 43, (11), 4921-4936.
302. Wang, Y.; Niu, S.; Zhang, Z.; Xie, Y.; Yuan, C.; Wang, H.; Fu, D., Reversible pH manipulation of the fluorescence emission from sectorial poly(amido amine) dendrimers. Journal of nanoscience and nanotechnology 2010, 10, (7), 4227-33.
303. Wang, D.; Imae, T., Fluorescence Emission from Dendrimers and Its pH Dependence. Journal of the American Chemical Society 2004, 126, (41), 13204-13205.
304. Sibata, M. N.; Tedesco, A. C.; Marchetti, J. M., Photophysicals and photochemicals studies of zinc(II) phthalocyanine in long time circulation micelles for photodynamic therapy use. Eur J Pharm Sci 2004, 23, (2), 131-8.
305. Chernyak, B. V.; Izyumov, D. S.; Lyamzaev, K. G.; Pashkovskaya, A. A.; Pletjushkina, O. Y.; Antonenko, Y. N.; Sakharov, D. V.; Wirtz, K. W. A.; Skulachev, V. P., Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2006, 1757, (5–6), 525-534.
306. Lin, H.; Shen, Y.; Chen, D.; Lin, L.; Wilson, B. C.; Li, B.; Xie, S., Feasibility study on quantitative measurements of singlet oxygen generation using singlet oxygen sensor green. Journal of fluorescence 2013, 23, (1), 41-7.
307. de Kroon, A. I. P. M.; Rijken, P. J.; De Smet, C. H., Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Progress in Lipid Research 2013, 52, (4), 374-394.
308. Allen, T. M.; Cullis, P. R., Liposomal drug delivery systems: From concept to clinical applications. Advanced drug delivery reviews 2013, 65, (1), 36-48.
309. Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y., A review on phospholipids and their main applications in drug delivery systems. Asian Journal of Pharmaceutical Sciences 2015, 10, (2), 81-98.
310. Fricker, G.; Kromp, T.; Wendel, A.; Blume, A.; Zirkel, J.; Rebmann, H.; Setzer, C.; Quinkert, R. O.; Martin, F.; Muller-Goymann, C., Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res 2010, 27, (8), 1469-86.
311. Puri, A.; Loomis, K.; Smith, B.; Lee, J.-H.; Yavlovich, A.; Heldman, E.; Blumenthal, R., Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic. Critical reviews in therapeutic drug carrier systems 2009, 26, (6), 523-580.
312. Schuiki, I.; Schnabl, M.; Czabany, T.; Hrastnik, C.; Daum, G., Phosphatidylethanolamine synthesized by four different

無法下載圖示 全文公開日期 2022/01/19 (校內網路)
全文公開日期 2037/01/19 (校外網路)
全文公開日期 2022/01/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE