簡易檢索 / 詳目顯示

研究生: 林雋堯
Chun-Yao Lin
論文名稱: 應用溫度感測微粒於熱渦環之流場與溫度場可視化
Flow and Temperature Visualization of a Heated Vortex Ring Using Temperature Sensitive Particle
指導教授: 田維欣
Wei-Hsin Tien
口試委員: 黃智永
Chih-Yun Huang
林怡均
Yi-Jiun LIN
溫琮毅
Tsrong-Yi Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 98
中文關鍵詞: 溫度感測塗料流場可視化
外文關鍵詞: Temperature Sensitive Paint, Flow Visualization
相關次數: 點閱:350下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究研發一創新之流場與溫度場可視化技術,並將其應用於水箱中之加熱後渦環之溫度場量測及流場可視化,為溫度感測塗料(Temperature Sensitive Paint)技術與流場可視化(Flow Visualization)技術之組合與延伸應用。與其它直接使用結晶狀微粒之溫度量測技術不同,本研究以加熱攪拌製程將可用於微粒影像測速法(Particle Image Velocimetry)之五微米循跡微粒外層包覆一層螢光材料(EuTTA, Europium (III) thenoyltrifluoroacetonate, trihydrate)之塗層使其有溫度感測能力,並以電子顯微鏡觀察其塗層情形。製成之螢光溫感微粒之激發與放射光譜將由光譜儀量測並紀錄其溫度對應螢光強度之關係,製作出其溫度校正曲線。為求驗證溫感微粒之性能,將此溫感微粒溶液以初始溫度分別為攝氏23度(未加熱)與70度(加熱)置入針筒並以之注入一裝有攝氏23度冷水之水箱內以形成渦環(vortex ring),並利用405nm之雷射光頁做為激發光源,將其619nm之放射光訊號以sCMOS攝影機截取並紀錄分析。實驗的結果顯示出渦環之流場結構能清楚的被觀察到,且不同溫度下觀測到的渦環光強度會因為溫度差異而有4.5倍的亮度差別,若是使用適當的激發光源與校正方法,此技術有潛力成為一量化工具同時量測流場中流體之速度與溫度分布。


    A whole-field flow and temperature measurement technique is proposed in this study to visualize the temperature and flow distribution of a heated vortex ring. This technique is a combination and extension of Temperature Sensitive Paint (TSP) and Flow Visualization (FV). 5μm tracer particles are coated with EuTTA (Europium (III) thenoyltrifluoroacetonate, trihydrate) through a heating and stirring process to be fluorescent and temperature sensitive (TS). Unlike other researches using crystalline thermal phosphor as tracing particles, the particles proposed in this study is in spherical shape. The emission spectrum of EuTTA and the temperature response curve is verified by a spectrometer. To validate the performance of the temperature sensitive particles, TS-particles are seeded in DI water and injected into a cold water tank at 23℃ from a syringe to create a heated (70℃) and unheated (23℃) vortex ring. Through a 405nm excitation laser source, the 619nm emission luminescence signal is captured and recorded by a sCMOS camera. The experimental results show that the vortex ring structures is visualized successfully and light intensities of the heated vortex ring image is 4.5 times larger than the unheated one because of the temperature differences. With appropriate illumination and calibration, this technique can be applied to quantitatively measure the velocity and temperature fields of the flow.

    第 1 章 緒論 第 2 章 實驗方法 第 3 章 結果與討論 第 4 章 結論與未來建議

    Abram, C., et al. "Temperature Imaging in Liquids using Thermographic Phosphor Particles."
    Abram, C., et al. "Investigation of Film Cooling Flows using Thermographic Particle Image Velocimetry at a 6 kHz Repetition Rate."
    Auerbach, David. "Some open questions on the flow of circular vortex rings." Fluid Dynamics Research 3.1-4 (1988): 209-213.
    Alfaro, Mariana, Gonzalo Paez, and Marija Strojnik. "Calibration and evaluation of EuTTA fluorescence as active medium for IR-to-visible conversion." Optical Engineering+ Applications. International Society for Optics and Photonics, 2008.
    Alfaro, Mariana, Gonzalo Paez, and Marija Strojnik. "Conversion of absorbed thermal radiation into visible using europium thenoyltrifluoroacetonate." Applied optics 49.28 (2010): 5444-5453.
    Adrian, Ronald J., and Jerry Westerweel. Particle image velocimetry. No. 30. Cambridge University Press, 2011.
    Abram, Christopher, et al. "High-speed planar thermometry and velocimetry using thermographic phosphor particles." Applied Physics B 111.2 (2013): 155-160.
    Crimaldi, J. P. "Planar laser induced fluorescence in aqueous flows." Experiments in fluids 44.6 (2008): 851-863.
    Cai, Tao, et al. "A novel lifetime-based phosphor thermography using three-gate scheme and a low frame-rate camera." Experimental Thermal and Fluid Science 80 (2017): 53-60.
    Fey, Uwe, et al. "Transition detection by temperature sensitive paint at cryogenic temperatures in the European Transonic Wind Tunnel (ETW)." Instrumentation in Aerospace Simulation Facilities, 2003. ICIASF'03. 20th International Congress on. IEEE, 2003.
    Fond, Benoit, et al. "Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles." Optics express 20.20 (2012): 22118-22133.
    Fond, Benoit, Christopher Abram, and Frank Beyrau. "On the characterisation of tracer particles for thermographic particle image velocimetry." Applied Physics B 118.3 (2015): 393-399.
    Grant, I. "Particle image velocimetry: a review." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 211.1 (1997): 55-76.
    Huang, Chih-Yung, Chih-Min Lai, and Jia-Syuan Li. "Applications of pixel-by-pixel calibration method in microscale measurements with pressure-sensitive paint." Journal of Microelectromechanical Systems 21.5 (2012): 1090-1097.
    Kemnitz, Klaus, et al. "Fluorescence decays and spectral properties of rhodamine B in submono-, mono-, and multilayer systems." The Journal of Physical Chemistry 90.21 (1986): 5094-5101.
    Kenning, D. B. R., and Youyou Yan. "Pool boiling heat transfer on a thin plate: features revealed by liquid crystal thermography." International journal of heat and mass transfer 39.15 (1996): 3117-3137.
    Kenning, D. B. R., T. Kono, and M. Wienecke. "Investigation of boiling heat transfer by liquid crystal thermography." Experimental Thermal and Fluid Science 25.5 (2001): 219-229.
    Koren, Klaus, and Michael Kühl. "A simple laminated paper-based sensor for temperature sensing and imaging." Sensors and Actuators B: Chemical 210 (2015): 124-128.
    Liu, Tianshu. Pressure‐and Temperature‐Sensitive Paints. John Wiley & Sons, Ltd, 2005.
    Lee, Joosung J., J. Craig Dutton, and Anthony M. Jacobi. "Application of temperature-sensitive paint for surface temperature measurement in heat transfer enhancement applications." Journal of mechanical science and technology 21.8 (2007): 1253-1262.
    Maas, H. G., A. Gruen, and D. Papantoniou. "Particle tracking velocimetry in three-dimensional flows." Experiments in Fluids 15.2 (1993): 133-146.
    Park, H. G., D. Dabiri, and M. Gharib. "Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder." Experiments in Fluids 30.3 (2001): 327-338.
    Paez, Gonzalo, Mariana Alfaro, and Marija Strojnik. "Thermal characterization of europium thenoyltrifluoroacetonate for its use in formation of thermal images." SPIE Optics+ Photonics. International Society for Optics and Photonics, 2006.
    Raffel, Markus, et al. Particle image velocimetry: a practical guide. Springer, 2013.
    Sakakibara, Jun, and Ronald J. Adrian. "Whole field measurement of temperature in water using two-color laser induced fluorescence." Experiments in Fluids 26.1-2 (1999): 7-15.
    Someya, Satoshi, et al. "Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles." Measurement Science and Technology 20.2 (2009): 025403.
    Someya, Satoshi, et al. "Combined two-dimensional velocity and temperature measurements of natural convection using a high-speed camera and temperature-sensitive particles." Experiments in Fluids 50.1 (2011): 65-73.
    Segura, Rodrigo, et al. "Non-encapsulated thermo-liquid crystals for digital particle tracking thermography/velocimetry in microfluidics." Microfluidics and Nanofluidics 14.3-4 (2013): 445-456.
    王禹權 "氧氣及氮氣於邊界阻礙物微混合器之混合效應研究" 清華大學動力機械工程學系學位論文 (2015) :1-63.
    林智仁. "微微粒影像測速法及溫度螢光感測技術應用於微流體 90 度彎管之流場與熱傳分析." 清華大學動力機械工程學系學位論文 (2014): 1-145.
    鄭意憲 "以溫度與速度量測技術探討氣泡誘導聲流之熱傳增益" 清華大學動力機械工程學系學位論文 (2015):1-65.
    黎振安. "The Study of Fluid Flow and Heat Transfer Inside Rectangular PDMS microchannels." 清華大學動力機械工程學系學位論文 (2011): 1-121.
    賴智敏. "微尺度流場量測與分析." 清華大學動力機械工程學系學位論文 (2011): 1-103.

    QR CODE