簡易檢索 / 詳目顯示

研究生: 張翼懷
Yi-Huai Chang
論文名稱: 基於近場自我注入鎖定技術之射頻液體介電係數感測器研製
Development of Radio-Frequency Liquid Permittivity Sensor Based on Near-Field-Self-Injection-Locked Technology
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 曾昭雄
Chao-Hsiung Tseng
王蒼容
Chun-Long Wang
瞿大雄
Tah-Hsiung Chu
黃建彰
Chien-Chang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 55
中文關鍵詞: 射頻液體介電係數感測器近場自我注入鎖定
外文關鍵詞: Near-Field-Self-Injection-Locked, Radio-Frequency Liquid Permittivity Sensor
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文基於近場自我注入鎖定(near-field-self-injection-locked,NFSIL)原理,發展一套液體複數介電係數量測系統,量測待測液體為葡萄糖水溶液及酒精水溶液。此系統由自我注入鎖定迴路及解調電路組成,自我注入鎖定電路係由非對稱共面波導(asymmetrical coplanar waveguide,ACPW)共振器作為振盪器的選頻及感測元件。待測液體引發共振器的相位變化,相移變化注入回振盪器中,產生對應於待測液體的頻率偏移。振盪器輸出訊號進入解調器後,將振盪器中的頻率偏移轉換成電壓輸出,輸出偏壓進行校準後,可用來計算待測液體的複數介電係數。本論文所提出之量測系統,具有低成本、高精準度及高靈敏度之優點。


    This thesis develops a near-field-self-injection-locked (NFSIL) sensor for liquid permittivity measurement. The water-glucose mixtures and water-ethanol solutions are chosen as liquid under test (LUT). This permittivity sensor mainly consists of a NFSIL sensing oscillator and a demodulation circuitry. The “asymmetrical coplanar waveguide (ACPW) resonator” simultaneously plays the roles of the sensing device and frequency selective element for the sensing oscillator implementation. As LUT is placed upon the ACPW resonator, it will introduce a transmission phase shift. This phase-shifted signal then injects into the sensing oscillator, and leads to a frequency deviation according to the permittivity of the LUT, namely a frequency-modulated (FM) signal. When this FM signal is sent into the demodulation circuitry, the frequency deviation will transfer into the in-phase (I) and quadrature-phase (Q) output voltages. After performing the sensor calibration using the reference liquids, the complex permittivities of the LUTs can be related to the measured I/Q voltages by the polynomial equations. The proposed permittivity sensor in this thesis has the advantages of low cost, high measurement accuracy, and real-time response.

    摘要……..…………………………………………………...........................................i Abstract……………………………………………………..........................................ii 誌謝……..………………………………………………….........................................iii 目錄…..………………………………………………….............................................iv 第一章 緒論 …………………………………………………………………............1 1-1 研究動機與目的…………………………………………………………….....1 1-2 液體介電係數量測原理……………………………………………………….2 1-3文獻回顧………………………………………………………………………..5 1-4章節說明………………………………………………………………………..8 第二章 液體介電係數 感 測振盪器 研製 ..……………………………………..……9 2-1 感測共振器設計與量測…………………………………………………….11 2-2 感測振盪器設計與量測…………………………………………………….16 2-3 液體介電係數量測之可行性驗證………………………………………….23 第三章 感測系統之解調電路設計與驗證 ………………………………………..28 3-1 解調電路設計與驗證……………………………………………………….28 3-2 液體介電係數量測系統量測結果………………………………………….31 3-3-1葡萄糖水溶液之量測與驗證……………………………..……………...32 3-3-2 酒精水溶液之量測與驗證……………………………...………………39 第四章 結論 ……………………………………………………………………......47 參考文獻……………………………………………………………………………..48

    [1] When was beer invented?
    http://www.lifeslittlemysteries.com/when-was-beer-invented-0584/
    [2] 金車噶瑪蘭威士忌酒廠 https://www.kavalanwhisky.com/zh-tw
    [3] 參觀噶瑪蘭酒廠影片
    https://www.youtube.com/watch?v=n4bFHPLbIW8&ab_channel=C%C3%A9lia%E8%91%A1%E8%90%84%E9%85%92%E4%B9%8B%E6%97%85
    [4] Basics of Measuring the Dielectric Properties of Materials
    https://www.cmc.ca/wp-content/uploads/2019/08/Basics_Of_MeasuringDielectrics_5989-2589EN.pdf
    [5] David M. Pozar, Microwave Engineering 4th Ed.,New York,NY,USA:Wiley,2011.
    [6] J.-Z. Bao, M. L. Swicord, and C. C. Davis, “Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol,” J. Chem. Phys., vol. 104, no. 12, pp. 4441–4450, 1996.
    [7] N1500A Materials Measurement Suite https://www.keysight.com/tw/zh/assets/7018-04630/technical-overviews/5992-0263.pdf
    [8] N1501A Dielectric Probe Kit
    https://www.keysight.com/tw/zh/assets/7018-04631/technical-overviews/5992-0264.pdf
    [9] A. A. Abduljabar, D. J. Rowe, A. Porch, and D. A. Barrow, “Novel Microwave Microfluidic Sensor Using a Microstrip Split-Ring Resonator,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 3, pp. 679-688, Mar. 2014.
    [10] X. Bao et al., "Integration of Interdigitated Electrodes in Split-Ring Resonator for Detecting Liquid Mixtures," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 6, pp. 2080-2089, June 2020
    49
    [11] A. Ebrahimi, J. Scott, K. Ghorbani, “Ultrahigh-Sensitivity Microwave Sensor for Microfluidic Complex Permittivity Measurement,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 10, pp. 4269–4277, Oct. 2019.
    [12] A. A. Helmy and K. Entesari, “A 1–8-GHz Miniaturized Spectroscopy System for Permittivity Detection and Mixture Characterization of Organic Chemicals,” IEEE Trans. Microw. Theory Techn., vol.60, no. 12, pp. 4157-4170, Dec. 2012
    [13] A. A. Helmy, S. Kabiri, M. M. Bajestan, and K. Entesari, “Complex Permittivity Detection of Organic Chemicals and Mixtures Using a 0.5–3-GHz Miniaturized Spectroscopy System,” IEEE Trans. Microw. Theory Techn., vol.61, no. 12, pp. 4646-4658, Dec. 2013
    [14] C. -H. Tseng, T. -J. Tseng and C. -Z. Wu, "Cuffless Blood Pressure Measurement Using a Microwave Near-Field Self-Injection-Locked Wrist Pulse Sensor," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 11, pp. 4865-4874, Nov. 2020, doi: 10.1109/TMTT.2020.3011446.
    [15] Behzad Razavi, RF Microeletronics. 2 nd ed., Upper Saddle River, NJ, USA: Prentice Hall Press, 2011.
    [16] Infineon, Low profile high gain silicon NPN RF bipolar transistor BFP520F data sheet https://www.mouser.tw/datasheet/2/196/Infineon_BFP520F_DS_v02_00_EN-2309208.pdf
    [17] C.-H Tseng, C.-L Chang, “Design of Low Phase-Noise Microwave Oscillator and Wideband VCO Based on Microstrip Combline Bandpass Filters” IEEE Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3151-3160, Oct. 2012.
    50
    [18] K. -C. Peng, M. -C. Sung, F. -K. Wang and T. . -S. Horng, "A Wireless-Frequency-Locked-Loop-Based Vital Sign Sensor With Quadrature Tracking and Phase-Noise Reduction Capability," in IEEE Sensors Journal, vol. 21, no. 8, pp. 9706-9715, 15 April15, 2021.
    [19] 楊承佑,基於微擾注入鎖定與鎖頻迴路技術之射頻液體介電係數感測器研楊承佑,基於微擾注入鎖定與鎖頻迴路技術之射頻液體介電係數感測器研製,國立台灣科技大學電子工程系碩士論文,民國製,國立台灣科技大學電子工程系碩士論文,民國110年年
    [20] E. L. Chuma, Y. Iano, G. Fontgalland and L. L. Bravo Roger, "Microwave Sensor for Liquid Dielectric Characterization Based on Metamaterial Complementary Split Ring Resonator," in IEEE Sensors Journal, vol. 18, no. 24, pp. 9978-9983, 15 Dec.15, 2018.
    [21] G. M. Rocco et al., “3-D printed microfluidic sensor in siw technology for liquids’ characterization,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1175–1184, Mar. 2020.
    [22] A. A. Helmy et al., “A self-sustained CMOS microwave chemical sensor using a frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 47, no. 10, pp. 2467–2483, Oct. 2012.
    [23] O. Elhadidy et al., “A CMOS fractional-N PLL-based microwave chemical sensor with 1.5% permittivity accuracy,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 9, pp. 3402–3416, Sep. 2013.

    無法下載圖示 全文公開日期 2024/09/06 (校內網路)
    全文公開日期 2024/09/06 (校外網路)
    全文公開日期 2024/09/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE