簡易檢索 / 詳目顯示

研究生: 林俊佑
Chun-Yu Lin
論文名稱: 低滲透土壤內地工不織布排水效果與改善措施之試驗研究
Experimental Study on Drainage Efficiency and Improvement Measures of Low Permeable Soil with Geosynthetic Drainage Layers
指導教授: 楊國鑫
Kuo-Hsin Yang
口試委員: 林宏達
Hung-da Lin
吳朝賢
Chau-shian Wu
何嘉浚
Chia-chun Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 165
中文關鍵詞: 低滲透性土壤水力傳導係數薄砂層長短期滲流細顆粒阻塞
外文關鍵詞: Geosynthetic, Low Permeable Soil, Drainage, Sand Layer, Clogging
相關次數: 點閱:234下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

實際工程中,為了施工方便及成本考量,以及滿足挖填方平衡之需求,常需使用現地細顆粒含量較高的土壤來回填,這類的土壤內含有較高的細顆粒,因此滲透性較差,遇到豪雨來襲,會導致排水不良及孔隙水壓快速累積的問題,最後造成邊坡滑動或是擋土牆體損壞。為了改善低滲透性回填土構造物受到豪雨滲流之排水效果,本研究設計一座橫向滲流儀,以粉土為低滲透性土壤、地工不織布為排水材料、搭配不同厚度之薄砂層(過濾排水層)進行各種複合排水系統之長短期滲流試驗。並於試體上方施加垂直載重模擬覆土壓力,試驗結果發現,無載重時地工不織布對系統滲透性有顯著的提升,但隨著載重作用與長時間滲流使排水層厚度減少以及地工不織布孔隙被土壤顆粒阻塞而降低其排水效率。本研究發現,在地工不織布周圍設置薄砂層後不論有無載重其排水效果皆能有效發揮,且系統滲透係數隨著薄砂層厚度的增加而增加。本研究成果有助於了解地工不織布以及薄砂層對低滲透性土壤的長短期排水改善效果,模擬現地長期暴雨下土壤與地工不織布間之互制行為,作為排水系統最佳化設計依據,於工程實務上減低構造物在豪雨下之受損情形,達到建立永續安全家園之最終目標。


This study carried out a series of horizontal permeability tests to evaluate the permeability and drainage efficiency of low permeable soil with geosynthetic drainage system. The experimental variables include: number of drainage layers, with and without sand layer, and sand layer thickness. The objective of this study is to improve the drainage capacity of low permeable soil for the application of geosynthetic-reinforced soil (GRS) structures backfilled with in-situ soil, typically with low permeability, under typhoon and heavy rainfall conditions. Test results indicate that system short-term permeability is improved as number of drainage layer, and number and thickness of sand layer increase. However, the system permeability decreases as the applied normal pressure, simulating the overburden pressure within retaining structures, increases. The reason of decreasing trend is because the normal pressure would compress the thickness of soil and drainage layer, and meanwhile fine soil particles are likely forced to penetrate into drainage layer which results in the clogging of drainage layer. Regarding the long-term permeability, test results demonstrate that system long-term permeability decreases as time elapse increases and the sand layer thickness decreases. By calculating the degree of retention (DOR), the ratio of mass of soil retained in a geotextile to the mass of the pure geotextile, this study finds DOR decreases as sand layer thickness increases, which provides a strong experimental evidence that the sand layer can effectively improve system permeability by preventing the drainage layer from clogging in long-term. Last, the measured results were compared with the predicted results using theoretical equation for equivalent horizontal hydraulic conductivity of multi-layered soil. The comparison results indicate with absence of normal stress, the measured and predicted system permeability are in a good agreement. However, the theoretical equation was found to overestimate system permeability as normal stress increases.

目錄 摘要 I ABSTRACT II 致謝 III 符號索引 IV 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 地工合成材之應用 2 1.3 加勁擋土牆結構物 5 1.4 研究動機 6 1.5 研究目的與方法 6 1.6 論文架構 7 第二章 文獻回顧 9 2.1 回填土設計規範 9 2.1.1優劣回填土之定義 9 2.1.2回填土性質比較 10 2.2 土壤-排水材料水力行為 10 2.2.1排水設計之考量 10 2.2.2排水材料之水力行為 14 2.2.3排水材料之應用 23 2.2.4阻塞機制與解決方法 27 2.2.5邊界條件之影響 30 2.2.6過濾機制與時間關係 35 2.3 排水問題總結 38 第三章 土壤與不織布基本參數試驗 39 3.1 試驗規劃 39 3.2 土壤基本參數試驗 40 3.2.1土壤物理試驗 40 3.2.2相對密度試驗 44 3.2.3土壤夯實試驗 46 3.2.4三軸透水試驗 48 3.3 不織布基本參數試驗 54 3.3.1不織布厚度量測 54 3.3.2不織布開放孔徑試驗 55 3.3.3不織布拉伸試驗 59 3.3.4不織布透水試驗 62 3.3.5土壤與不織布過濾規範之檢核 64 第四章 試驗步驟與儀器介紹 67 4.1 影響土壤滲透性之因素 67 4.2 滲透儀裝置 68 4.3 試體準備 70 4.4 短期滲流試驗步驟 71 4.5 長期滲流試驗步驟 75 4.6 地工織物透水裝置 76 4.7 不織布透水試驗步驟 78 4.8 滲流試驗規劃 82 第五章 土壤-不織布-砂層滲流試驗結果 83 5.1 短期滲流試驗結果 83 5.1.1粉土與砂土滲流試驗結果 84 5.1.2不織布之影響 86 5.1.3不織布加薄砂層之影響 87 5.1.4薄砂層厚度之影響 89 5.1.5短期滲流試驗小結 94 5.2 長期滲流試驗結果 95 5.2.1不織布之影響 96 5.2.2不織布加薄砂層之影響 98 5.2.3薄砂層厚度之影響 100 5.2.4長期滲流試驗小結 104 5.3 不織布透水試驗結果 105 5.3.1單層不織布 108 5.3.2雙層不織布 109 5.3.3三層不織布 111 5.3.4薄砂層厚度之影響 113 5.3.5小結 114 第六章 不織布排水效果分析與探討 115 6.1 系統滲透改善係數 115 6.2 不織布長期滲透折減係數 126 6.3 不織布長期滲流下之阻留度 129 6.4 不織布孔隙比與滲透關係 135 6.5 理論公式之驗證 138 6.5.1不考慮載重與出水口之影響 139 6.5.2考慮載重之影響 141 6.5.3考慮載重與出水口之影響 143 第七章 結論與建議 145 7.1 結論 145 7.2 建議 146 參考文獻 147

[1] ASTM (2001), “Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method” Designation: D4595-86.
[2] ASTM (2004), “Standard Test Method for Determining Apparent Opening Size of a Geotextile” Designation: D4751-04.
[3] ASTM (2006), “Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table” Designation: D4253.
[4] ASTM (2006), “Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density” Designation: D4254.
[5] ASTM (2006), “Standard Test Method for Measuring the Nominal Thickness of Geosynthetics” Designation: D5199-01.
[6] ASTM (2007), “Standard Test Method for Particle-Size Analysis of Soils” Designation: D422-63.
[7] ASTM (2007), “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (600kN-m/m3)” Designation: ASTM D698-07.
[8] ASTM (2008), “Standard Test Method for Sieve Analysis of Surfacing for Asphalt Roofing Products” Designation: D452-91.
[9] ASTM (2009), “Standard Test Methods for Water Permeability of Geotextiles by Permittivity” Designation: D4491-99.
[10] ASTM (2009), “Standard Test Method for Measuring Mass per Unit Area of Geotextiles” Designation: D5261-92.
[11] ASTM (2011), “Standard Test Method for Determining the (In-Plane) Hydraulic Transmissivity of a Geosynthrtic by Radial Flow” Designation: D6574-00.
[12] AASHTO (2000), “Standard Specifications for Highway Bridges” American Association of State Highway and Transportation Officials, Seventeenth Edition, Washington, D. C., USA.
[13] Anon (1990), “Designing for Subsurface Drainage” Exxon Chemical Geopolymers, Pontypool, UK.
[14] A. Rollin and G. Lombard (1988), “Mechanisms Affecting Long-term Filtration Behavior of Geotextiles” Geotextiles and Geomembranes, 07, No.1-2, pp. 119−145.
[15] A. Sridharan, S. Murthy, B. R. Bindumadhava and K. Revansiddappa (1991), “Technique for Using Fine-Grained Soil in Reinforced Earth” Journal of Geotechnical Engineering, ASCE, 117, No.8, pp. 1174–1190.
[16] A. Sridharan and K. Prakash (2002), “Permeability of Two-layer Soils” Geotechnical Testing Journal, ASTM, 25, No.4, pp. 1–6.

[17] B. R. Christopher and R. P. Stulgis, “Low Permeable Backfill Soils in Geosynthetic Reinforced Soil Walls: State of the Practice in North America” Christopher Consultants, Roswell, GA, USA and Geocomp Corporation, Manchester, NH, USA.
[18] C. Ghosh and K. Yasuhara (2004), “Clogging and Flow Characteristics of a Geosynthetic Drain Confined in Soils Undergoing Consolidation” Geosynthetics International, 11, No.1, pp. 19–34.
[19] D. P. Jaisi, U. Glawe and D. T. Bergado (2005), “Hydraulic Behaviour of Geosynthetic and Granular Landfill Drainage Materials in the Sa Kaeo Landfill, Thailand” Geotextiles and Geomembranes 23, pp. 185–204.
[20] D. V. Raisinghani and B. V. S. Viswanadham (2010), “Evaluation of Permeability Characteristics of a Geosynthetic-Reinforced Soil through Laboratory Tests” Geotextiles and Geomembranes 28, pp. 579–588.
[21] E. M. Palmeira and M. G. Gardoni (2002), “Drainage and Filtration Properties of Non-woven Geotextiles under Confinement Using Different Experimental Techniques” Geotextiles and Geomembranes 20, pp. 97–115.
[22] E. M. Palmeira, R. J. Fannin and Y. P. Vaid (1996), “A Study on the Behavior of Soil–Geotextile Systems in Filtration Tests” Canadian Geotechnical Journal 33, No.4, pp. 899–912.
[23] E. Juarez-Babillo (1983), “General Permeability Change Equation for Soils” In
Proceedings of International Conference on Constitutive Laws for Engineering
Materials, ed. C. S. Desai, University of Arizona, Tucson, AZ, USA pp. 205-209.
[24] FHWA (1998), “Geosynthetic Design and Construction Guidelines” Federal Highway Administration Demonstration, Hl-95-038, April.
[25] FHWA (1997), “Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines” Federal Highway Administration Demonstration Project 82, USA.
[26] H. I. Ling, T. H. Wu and Jun-Nishimura (1993), “Hydraulic Conductivity of Geotextiles under Typical Operational Conditions” Geotextiles and Geomembranes 12, pp. 509–542.
[27] J. C. Chai and N. Miura., “Long-term Transmissivity of Geotextile Confined in Clay” Geosynthetics-7th ICG.
[28] J. Collin (1997), “Design Manual for Segmental Retaining Walls” 2nd Edition, National Concrete Masonry Association (NCMA), Herndon, VA, USA.
[29] J. G. Zornberg and J. K. Mitchell (1994), “Reinforced Soil Structures with Poorly Drainage Backfills Part1: Reinforcement Interactions and Functions” Geosynthetics International, Vol. 2, No.1, pp. 103-147.

[30] J. G. Zornberg, R. J. Barrows, B. R. Christopher and J. K. Mitchell (1995), “Constructing a Geotextile-Reinforced Slope” GFR, Vol 13, No.7, IFAI, pp. 26-28.
[31] J. Masounave, A. L. Rollin and R. Denis (1980), “Prediction of Permeability of Nonwoven Geotextiles from Morphometry Analysis” Journal of Microscopy 121 No.1, pp. 99–100.
[32] J. Młynarek, L. Bogumił, R. Andrel and B. Gilles (1991), “Soil Geotextile System Interaction” Geotextiles and Geomembranes, 10, No.2, pp. 161−176.
[33] J. P. Giroud (1996), “Granular Filters and Geotextile Filters” In: Lafleur, J., Rollin, A. (Eds.), GeoFilters’96. Montreal, Canada, pp. 565–680.
[34] J. P. Giroud, J. G. Zornberg and A. Zhao (2000), “Hydraulic Design of Geosynthetic and Granular Collection Layer” Geosynthetics International, 07 No.4-6, pp. 433-452.
[35] J. P. Gourc, Y. Faure, A. Rollin and J. Lafleur (1982), “Structural Permeability Law of Geotextiles” Second International Conference on Geotextiles, Las Vegas, USA, Vol. 1, pp. 149–154.
[36] J. Y. Wang (2012), “Experimental Study on Seepage Failure of Uniform and Gap-Graded Soils” M.S, National Taiwan University of Science and Technology, Taipei, Taiwan.
[37] K. H. Yang (2009), “Stress Distribution within Geosynthetic-Reinforced Soil Structures” Ph.D dissertation, the University of Texas at Austin, USA.
[38] M. Bourdillon, G. Didier and J. Gielly (1977), “Utilisation des Produits Non-tisses pour Ie Drainage” Proceedings of the International Conference on the Use of Fabrics in Geotechnics, Paris, Vol. 2, pp. 279-284.
[39] R. M. Koerner (1990), “Designing with Geosynthetics, 2nd edn” Prentice Hall, Englewood Cliffs, NJ, pp. 84-90, 120-5, 228-35, 334-59, 478, 481, 523-79, Geopipe supplement.
[40] Rong-Her Chen, Chia-Chun Hoand Wen-Bin Chung (2008), “The Filtration Mechanism and Micro-Observation of Soil-Geotextile Systems under Cyclic Flows” Journal of Geoengineering, Vol. 3, pp. 101-112.
[41] S. J. DeBerardino (1992), “Drainage Principle and the Use of Geosynthetics ” Geotextiles and Geomembranes 11, pp. 449–459.
[42] T. Iryo and R. K. Rowe (2005), “Hydraulic Behaviour of Soil-Geocomposite Layers in Slopes” Geosynthetics International 12, No.3, pp. 145–155.
[43] T. W. Lambe and R. V. Whitman (1969), “Soil Mechanics” John Wiley & Sons, Inc., New York, NY, USA, pp. 281-294.
[44] 李維峰、廖振程、黃奉琦,「加勁擋土結構應用於交通土木工程規範草案之研究」,交通部,中華地工材料協會(MOTC-STAO-96-04),中華民國 (2008)。

QR CODE