簡易檢索 / 詳目顯示

研究生: 葉亦施
Yesi
論文名稱: 使用自組裝單分子薄膜橋接之金屬奈米粒子於反式混摻異質接面有機太陽能電池之研究
Investigation of the effect of self-assembled monolayer anchored metal nanoparticles in inverted bulk hetero-junction organic solar cells
指導教授: 戴龑
Yian Tai
口試委員: 林麗瓊
Lin Li Chyong
陳貴賢
Chen Kuei Hsien
劉端祺
Liu Tuan Chi
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 82
中文關鍵詞: Organic solar cellsPlasmonicNanoparticlesBulkheterojunctionsself assembled monolayer
外文關鍵詞: Organic solar cells, Plasmonic, Nanoparticles, Bulkheterojunctions, self assembled monolayer
相關次數: 點閱:264下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

It has been widely reported that plasmonic effects in metallic nanoparticles can enhance light trapping in organic solar cells (OSCs). In this work, we investigate the effect of metal (Ag or Au) NPs – induced surface plasmons on the performance of an inverted bulk-heterojunction OSC consisting of P3HT and PCBM as active materials and a ZnO layer as electron transport layer. . The photon absorption can be largely increased upon the introducing of the NPs in the device, which was confirmed by absorption and external quantum efficieny spectra. Moreover, by immobilization of ligand-capped metal NPs on a self-assembled monolayer modified ZnO surface, the charge transport could be enhanced as compare to the device that the NPs were physisorbed on ZnO. As a result, the power conversion efficiency (PCE) can be improved by 20% and 40% for optimized devices incorporating with Au and Ag NPs, respectively as compared to reference device.


It has been widely reported that plasmonic effects in metallic nanoparticles can enhance light trapping in organic solar cells (OSCs). In this work, we investigate the effect of metal (Ag or Au) NPs – induced surface plasmons on the performance of an inverted bulk-heterojunction OSC consisting of P3HT and PCBM as active materials and a ZnO layer as electron transport layer. . The photon absorption can be largely increased upon the introducing of the NPs in the device, which was confirmed by absorption and external quantum efficieny spectra. Moreover, by immobilization of ligand-capped metal NPs on a self-assembled monolayer modified ZnO surface, the charge transport could be enhanced as compare to the device that the NPs were physisorbed on ZnO. As a result, the power conversion efficiency (PCE) can be improved by 20% and 40% for optimized devices incorporating with Au and Ag NPs, respectively as compared to reference device.

Table of Contents 中文摘要i English abstractii Acknowledgementsiii Table of contentsiv List of figuresvii List of tablesxi List of abbreviationsxii Chapter I. Introduction1 I.1. Preface1 I.2. Solar cells technology2 I.2.1 Crystalline and multi-crystalline silicon3 I.2.2 Inorganic thin films3 I.2.3 Dye-sensitized solar cells4 I.3. Organic solar cells5 I.4 Working principles of solar cells5 I.5 Parameters of organic solar cells7 I.5.1 Open-circuit voltage8 I.5.2 Short-circuit current8 I.5.3 Fill factor8 I.5.4 Power conversion efficiency9 I.5.5 External quantum efficiency10 I.6 Organic solar cell device architecture11 I.6.1 Single layer of conjugated polymers11 I.6.2 Bi-layer hetero-junction of conjugated polymers12 I.6.3 Bulk hetero-junction of conjugated polymers13 I.7 Surface plasmon16 I.7.1 Surface plasmon polaritons (SPPs)17 I.7.2 Localized surface plasmons (LSPs)18 I.8 Plamonic light trapping in thin film solar cells20 I.9 Plamonic effects in organic solar cells21 I.10 Research objectives28 Chapter II. Theory29 II.1 Self-assembled monolayers (SAMs)29 Chapter III. Experimental Methods32 III.1 Materials32 III.1.1 Substrate32 III.1.2 Chemicals32 III.1.3 Active layer materials32 III.1.4 Instruments33 III.2 Experimental procedure33 III.2.1 Substrate preparation33 III.2.2 Device fabrication34 III.3 Characterization35 III.3.1 AC-235 III.3.2 Atomic force microscopy35 III.3.3 Contact angle35 III.3.4 External quantum efficiency (EQE)35 III.3.5 Photoluminescence spectra (PL)36 III.3.6 Scanning electron microscope (SEM)36 III.3.7 Solar simulator36 III.3.8 Transmission electron microscope (TEM)36 III.3.9 UV-Visible36 III.3.10 X-ray photoelectron spectroscopy37 Chapter IV. Results and discussion38 IV.1 Characterization of 3-MPTS films38 IV.2 Metal nanoparticles properties39 IV.3 3-MPTS anchored metal nanoparticles41 IV.4 Effect of different immersion of Ag and Au NPs41 IV.5 Plasmonic effect of Ag and Au NPs on photovoltaic performance46 IV.6 Effect of metal NPs on exciton quenching56 IV.7 Effect of organic ligands on photovoltaic performance58 Chapter V. Conclusion62 References63

References

1.L. D. Pulfrey, Photovoltaic Power Generation. (New York: Van Nostrand Reinhold 1978).
2.M. A. Green, Solar cells: Operating principles, technology and system applications. (Kensington: The University of New South Wales. , 1998).
3.M.A.Green, K.Emery, D.L.King, S.Igari and W.Warta, Progress in Photovoltaics 13, 49 (2005).
4.H. J. Q. W.Shockley, Journal of Applied Physics 32 (510) (1961).
5.M. A. Green, K. Emery, Y. Hishikawa and W. Warta, Progress in Photovoltaics: Research and Applications 18, 346-352 (2010).
6.S. S. Hegedus and A. Luque, in Handbook of Photovoltaic Science and Engineering (Hoboken, NJ: John Wiley & Sons, 2003), pp. 1-43.
7.M. A. Green, Journal of Materials Science: Materials in Electronics 18, S15-S19 (2007).
8.S. Kurtz and J. Geisz, Optics Express 18, A73-A78 (2010).
9.B. O’Regan and M. Gratzel, Nature 353, 737 (1991).
10.M. Gratzel, Progress in Photovoltaics: Research and Applications 8 (1), 171-185 (2000).
11.A. Yassara, L. Miozzoa, R. Girondaa and Gilles Horowitza, Progress in Polymer Science (2012).
12.c. Valentin Dan Mihailet, University of Groningen, 2005.
13.J. William J. Potscavage, Georgia Institute of Technology, 2011.
14.M. D. McGehee and M. A. Topinka, Nature Materials 5, 675-676 (2006).
15.P. Peumans, A. Yakimov and S. R. Forest, Applied Physics Letters 93, 3693 (2003).
16.C.W.Tang, Applied Physics Letters 48, 183-185 (1986).
17.G. A. Chamberlain, Solar Cells 8, 47-83 (1983).
18.P. Peumans, V. Bulovic and S. R. Forrest, Applied Physics Letters 76, 2650-2652 (2000).
19.P. Peumans and S. R. Forrest, Applied Physics Letters 79, 126-128 (2001).
20.J. Xue, S. Uchida, B. P. Rand and S. R. Forrest, Applied Physics Letters 84, 3013-3015 (2004).
21.S. Yoo, B. Domercq and B. Kippelen, Applied Physics Letters 85, 5427-5429 (2004).
22.S. Yoo, W. J. Potscavage, D. Jr., B. and S.-H. Han, Solid-State Electronics 51, 1367-1375 (2007).
23.C.-W. Chu, Y. Shao, V. Shrotriya and Y. Yang, Applied Physics Letters 86, 243506 (2005).
24.K. Schulze, C. Uhrich, R. Schuppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold and P. Bauerle, Advanced Materials 18, 2872-2875 (2006).
25.D. Cheyns, B. P. Rand and P. Heremans, Applied Physics Letters 97, 033301 (2010).
26.G. Wei, S. Wang, K. Renshaw, M. E. Thompson and S. R. Forrest, ACS Nano 4, 1927-1934 (2010).
27.M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee and S. T. Lee, Applied Physics Letters 90, 023504 (2007).
28.W.-B. Chen, H.-F. Xiang, Z.-X. Xu, B.-P. Yan, V. A. L. Roy, C.-M. Che and P.-T. Lai, Applied Physics Letters 91, 191109 (2007).
29.Y. Kinoshita, T. Hasobe and H. Murata, Applied Physics Letters 91, 083518 (2007).
30.S. Sista, Y. Yao, Y. Yang, M. L. Tang and Z. Bao, Applied Physics Letters 91, 223508 (2007).
31.M. T. Lloyd, A. C. Mayer, A. S. Tayi, A. M. Bowen, T. G. Kasen, D. J. Herman, D. A. Mourey, J. E. Anthony and G. G. Malliaras, Organic Electronics 7, 243-248 (2006).
32.M. Hiramoto, H. Fujiwara and M. Yokoyama, Applied Physics Letters 58, 1062-1064 (1991).
33.P. Peumans, S. Uchida and S. R. Forrest, Nature 425, 158-162 (2003).
34.S. Heutz, P. Sullivan, B. M. Sanderson, S. M. Schultes and T. S. & Jones, Solar Energy Materials & Solar Cells 83, 229-245 (2004).
35.J. G. Xue, B. P. Rand, S. Uchida and S. R. Forrest, Advanced Functional Materials 17, 66-71 (2005).
36.F. Yang, M. Shtein and S. R. Forrest, Nature Materials 4, 37-41 (2005).
37.S. Pfuetzner, J. Meiss, A. Petrich, M. Riede and K. Leo, Applied Physics Letters 94, 223307 (2009).
38.M. T. Lloyd, A. C. Mayer, A. S. Tayi, A. M. Bowen, T. G. Kasen, D. J. Herman, D. A. Mourey, J. E. Anthony and G. G. Malliaras, Organic Electronics 7, 243-248 (2006).
39.N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky and F. Wudl, Applied Physics Letters 62, 585-587 (1993).
40.J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend and A. B. H. S. C. Moratti, Nature 376, 498-500 (1995).
41.G. Yu and A. J. Heeger, Journal of Applied Physics 78, 4510-4515 (1995).
42.G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science 270, 1789 (1995).
43.B. Walker, A. B. Tomayo, X.-D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat and T.-Q. Nguyen, Advanced Functional Materials 19, 3063-3069 (2009).
44.W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, Advanced Functional Materials 15 (1617-1622) (2005).
45.G. Li, Shrotriya, H. V., J., Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nature Materials 4, 864-868 (2005).
46.J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nature 6, 497-500 (2007).
47.Y. Liang, Y. Wu, Feng, D., S.-T. Tsai, H.-J. Son, G. Li and L. Yu, Journal of the American Chemical Society 131, 56-57 (2009).
48.S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nature Photonics 3 (297-303) (2009).
49.J. Peet, C. Soci, R. C. Coffin, T. Q. Nguyen, A. Mikhailovsky, D. Moses and G. C. Bazan, Applied Physics Letters 89, 252105 (2006).
50.J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim and K. Lee, Journal of the American Chemical Society 130, 3619-3623 (2008).
51.J. K. Lee, N. E. Coates, S. Cho, N. S. Cho, D. Moses, G. C. Bazan, K. Lee and A. J. Heeger, Applied Physics Letters 92, 243308 (2008).
52.J. Peet, M. L. Senatore, A. J. Heeger and G. C. Bazan, Advanced Materials 21 (14-15), 1521-1527 (2009).
53.M. Reyes-Reyes, K. Kim and D. L. Carroll, Applied Physics Letters 87 (8), 083506 (2005).
54.J. Y. Kim, S. H., H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, Advanced Materials 18, 572-576 (2006).
55.H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, Nature Photonics 3, 649-653 (2009).
56.S. E. Shaheen, M. S. White, D. C. Olson, N. Kopidakis and D. S. Ginley, Solar & Alternative Energy (2007).
57.M. P. d. Jong, L. J. v. Ijzendoorn and M. J. A. d. Voigt, Applied Physics Letters 77, 2255-2257 (2000).
58.J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante and A. J. Heeger, Science 317, 222-225 (2007).
59.K.Lee, J.Y.Kim, S.H.Park, S.H.Kim, S.Choand and A.J.Heeger, Advanced Functional Materials 19, 2445 (2007).
60.J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, Advanced Materials 18 (5), 572-576 (2006).
61.J. Gilot, I. Barbu, M. M. Wienk and R. A. J. Janssen, Applied Physics Letters 91 (113520) (2007).
62.S. K. Hau, H.-L. Yip, H. Ma and A. K.-Y. Jen, Applied Physics Letters 93 (23), 233304 (2008).
63.M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, Applied Physics Letters 89 (14), 143517 (2006).
64.T. C. Monson, M. T. Lloyd, D. C. Olson, Y.-J. Lee and J. W. P. Hsu, Advanced Material 20, 4755-4759 (2008).
65.J. H. Chang, Y. H. Chen, H. W. Lin, Y. T. Lin, H. F. Meng and E. C. Chen, Organic Electronics 13 (4), 705-709 (2012).
66.G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Applied Physics Letters 91 (15), 152111 (2007).
67.G. Li, C.-W. Chu, V. Shrotriya, J. Huang and Y. Yang, Applied Physics Letters 88 (25), 253503 (2006).
68.Y. Zhoua, F. Lia, S. Barraua, W. Tian, O. Inganasa and F. Zhang, Solar Energy Materials & Solar Cells 93 (4), 497-500 (2009).
69.Y. W. Heo, D. P. Nortona, L. C. Tiena, Y. Kwona, B. S. Kang, F. Ren, S. J. Peartona and J. R. LaRoche, Materials Science and Engineering: R: Reports 47 (1-2), 1-47 (2004).
70.Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Advanced Materials 23 (14), 1679-1683 (2011).
71.F. C. Krebs, J. Fyenbo, D. M. Tanenbaum, S. A. Gevorgyan, R. Andriessen, B. V. Remoortere, Y. Galagan and M. Jorgensen, Energy Environmental Science 4 (10), 4116-4123 (2011).
72.S. Tokito, K. Noda and Y. Taga, Journal of Applied Physics 29, 2750 (1996).
73.H. You, Y. Dai, Z. Zhang and D. Ma, Journal of Applied Physics 101 (2), 026105 (2007).
74.T. Yang, W. Cai, D. Qin, E. Wang, L. Lan, X. Gong, J. Peng and Y. Cao, Journal of Physics Chemistry 114 (14), 6849-6853 (2010).
75.V. Shrotriya, G. Li, Y. Yao, C.-W. Chu and Y. Yang, Applied Physics Letters 88 (7), 073508 (2006).
76.R. H. Ritchie, Physical Review 106, 874-881 (1957).
77.J. Baik, S. Lee and M. Moskovits, Nanoletters 9, 672 (2009).
78.S. Nie and S. Emory, Science 275, 1102-1106 (1997).
79.K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, Journal of Physics Chemistry 107, 668-677 (2003).
80.W. L. Barnes, A. Dereux and T. W. Ebbesen, Nature 424, 824-830 (2003).
81.A. V. Zayats and I. I. Smolyaninov, Journal of Optics A: Pure and Applied Optics 5 (4) (2003).
82.P. albella, J. M. Saiz, F. G. lez and F. Moreno, Journal of Quantitative Spectroscopy & Radiative Transfer 112, 2046-2058 (2011).
83.C. Burda, X. Chen, R. Narayanan and M. A. El-sayed, Chemical Review 105, 1025-1102.
84.h. A. Atwater and a. Polman, Nature Materials 9, 205-214 (2010).
85.H. L. Gao, X. W. Zhang, Z. G. Yin, H. R. Tan, S. G. Zhang, J. H. Meng and X. Liu, Applied Physics Letters 101 (133903) (2012).
86.X. Chen, L. Zuo, W. Fu, Q. Yan, C. Fan and H. Chen, Solar Energy Materials & Solar Cells 111, 1-8 (2013).
87.A. J. Morfa and K. L. Rowlen, Applied Physics Letters 92, 013504 (2008).
88.G. D. Spyropoulos, M. Stylianakis, E. Stratakis and E. Kymakis, Photonics and Nanostructures - Fundamentals and Applications 9, 184-189 (2011).
89.D. D. S. Fung, L. Qiao, W. C. H. Choy, C. Wang, W. E. I. Sha, F. Xie and S. He, Journal of Materials Chemistry 21, 16349-16356 (2011).
90.J. Wang, Y.-J. Lee and J. W. P. Hsu, Journal of Physics Chemistry 117, 85-91 (2013).
91.P.-P. Cheng, G.-F. Ma, J. Li, Y. Xiao, Z.-Q. Xu, G.-Q. Fan, Y.-Q. Li, S.-T. Lee and J.-X. Tang, Journal of Materials Chemistry 22, 22781-22787 (2012).
92.X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha and A. H. P. Ho, Advanced Functional Materials (2013).
93.G. D. Spyropoulos, M. M. Stylianakis, E. Stratakis and E. Kymakis, Applied Physics Letters 100, 213904 (2012).
94.F.-X. Xie, W. C. H. Choy, C. C. D. Wang, Wei E. I. Sha and D. D. S. Fung, Applied Physics Letters 99, 153304 (2011).
95.N. Kalfagiannis, P. G. Karagiannidis, C. Pitsalidis, N. T. Panagiotopoulos and S. Logothetidis, Solar Energy Materials and Solar Cells 104, 165-174 (2012).
96.S. F. J. Appleyard, S. R. Day, R. D. Pickford and M. R. Willis, Journal of materials chemistry 10, 169-173 (2000).
97.R. A. Hatton, S. R. Day, M. A. Chesters and M. R. Willis, Thin Solid Films 394 (1-5), 291-296 (2001).
98.C.-H. Kuo, C.-P. Liu, S.-H. Lee, H.-Y. Chang, W.-C. Lin, Y.-W. You, H.-Y. Liao and J.-J. Shyue, Chemistry Chemical Physics 13, 15122-15126 (2011).
99.S. Khodabakhsh, B. M. Sanderson, J. Nelson and T. S. Jones, Advanced Functional Materials 16 (1), 95-100 (2006).
100.N. R. Armstrong, C. Carter, C. Donley, A. Simmonds, P. Lee and M. Brumbach, Thin Solid Films 445 (2), 342-352 (2003).
101.C. Goh, S. R. Scully and M. D. McGehee, Journal of Applied Physics 101, 114503 (2007).
102.J. S. Kim, J. H. Park, J. H. Lee, J. Jo, D.-Y. Kim and K. Cho, Applied Physics Letters 91 (11), 112111 (2007).
103.M. T. S. Oberoi, Dresden University of Technology.
104.A. T. Almeida, M. C. Salvadori and D. F. S. Petri, Langmuir 18, 6914-6920 (2002).
105.M. Tanigawa and T. Okada, Analytica Chimica Acta 365, 19-25 (1988).
106.H. Sugimura and N. Nakagiri, Journal of American Chemical Society 119, 9926-9929 (1997).
107.J. Z. Q. Li and Z. Liu, Langmuir 19, 166-171 (2003).
108.K. C. Grabar, K. J. Allison and B. E. Baker, Langmuir 12, 2353-2361 (1996).
109.G. C. Brabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie and M. J. Natan, Journal of American Chemical Society 118, 1148-1153 (1996).
110.S. Shao, F. Liu, G. Fang, B. Zhang, Z. Xie and L. Wang, Organic Electronics 12, 641-647 (2011).
111.C. Shen, C. Hui, T. Yang, C. Xiao, J. Tian, L. Bao, S. Chen, H. Ding and H. Gao, Chemistry of Materials 20, 6939-6944 (2008).
112.T. Bai and X. Cheng, J. Univ. Sci. Technol. Beijing 15 (2) (2008).
113.J. Q. Wang, S. G. Yang, X. H. Liu, S. L. Ren, F. Guan and M. Chen, Applied Surface Science 221, 272 (2004).
114.G. Demirel, M. O. Cağlayan, B. Garipcan and E. Pişkin, Surf. Sci 602, 956 (2008).
115.M. Wirde, U. Gelius and L. Nyholm, Langmuir 15, 6370 (1999).
116.C. Langhammer, Z. Yuan, L. Zoric and B. Kasemo, Nanoletters 6, 833 (2006).
117.H. A. Atwater and A. Polman, nature Materials 9, 205 (2010).
118.Y. A. Akimov, W. S. Koh, S. Y. Sian and S.Ren, Applied Physics Letters 96, 073111 (2010).
119.J. R. Lakowicz, Anaytica Biochemistry 337 (171) (2005).
120.J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang and C. S. Hsu, ACS Nano 5, 959-967 (2011).
121.L.-M. Chen, Z. Xu, Z. Hong and Y. Yang, Journal of materials chemistry 20, 2575-2598 (2010).
122.D. E. Markov and P. W. M. Blom, Condensed material matter 72, 161401 (2005).
123.H. H. Shen, P. Bienstman and B. Maes, Journal of Applied Physics 106, 073109 (2009).

QR CODE