簡易檢索 / 詳目顯示

研究生: 莊翔竣
Siang-Jyun Jhuang
論文名稱: 以迎風面噴流控制方柱流場特性
Control of flow around a square prism by slot jet injection from the front surface
指導教授: 黃榮芳
Rong-fang Huang
口試委員: 趙振綱
Ching-kong Chao
林怡均
Yi-jiun Lin
許清閔
Ching-min Hsu
陳佳堃
Jia-Kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 290
中文關鍵詞: 迎風面噴流方柱
外文關鍵詞: slot jet
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究針對無攻角之二維方柱,於方柱迎風面中央射出一均勻噴流,以雷諾數與和噴流與橫風之注射比為變數,探討橫風雷諾數在1600 ~ 3300之區間時,方柱周圍流場結構、尾流區渦漩逸放特性以及噴流之動態行為。在一氣動力風洞中,藉由煙線可視化技術觀察方柱周圍流場特徵,並利用長曝光攝影技術分析迎風面噴流及方柱尾流之平均流場特性。使用熱線風速儀量測方柱尾流區渦漩逸放及其引致之上游流場不穩定性,並分析頻率、紊流統計特性與尾流寬度。以PIV技術量化迎風面噴流結構,並與流場可視化之特徵比對。流場可視化的結果顯示,方柱迎風面噴流之特徵模態與注射比具有密切之關聯性:噴流注射比小於1.0時,由方柱迎風面射出之噴流呈現震盪模態;在注射比大於1.2時,噴流隨機偏向某一邊,稱為偏折模態;注射比在1.0 ~ 1.2之區間極為不穩定,為一模態轉換之臨界區域。以長曝光照片分析迎風面噴流之平均流場特性,在震盪模態時噴流所形成之迎風面寬度隨注射比增加,但在模態轉換之過程劇烈下降,模態轉換為偏折噴流後,迎風面寬度再隨噴流注射比之增加而上升。熱線風速儀輸出之渦漩逸放頻率與方柱上游之主頻值相同,且訊號波呈反相,若配合煙線可視化的判斷,顯示下游渦漩逸放在方柱某一側生成時,會將上游噴流推向反方向;史卓數在噴流震盪模態時會隨注射比增加而增加,在模態轉換過程隨注射比增加而降低,在偏折噴流模態,史卓數再隨注射比增加而逐漸增加,尾流寬度則為相反之趨勢。在注射比大於1.2時,由於噴流模態轉換,使得尾流寬度達到最寬,故渦漩逸放頻率最低,史卓數因此達到最小值。


The surface flow characteristics and wake instability of a two-dimensional square cylinder controlled by an upstream-surface jet injection were experimentally investigated. Flow visualization was performed by using the smoke wire technique and smoke-injection through the jet. The wake and jet instability characteristics were detected simultantaneously by using two one-component hot-wire anemometers. The wake width was evaluated by considering the distance between two peaks appearing in the belocity distributions measured in the wake. The flow field around the jet injection area on the upstream cylinder surface was measured by a particle image velocimeter (PIV). The results of flow visualization showed that the features of flow were strongly subject to the influences of the injection ratio R and Reynolds number Rew. At R < 1.0, the jet presented left-and-right oscillation motion (which was denoted as the oscillation mode). At R > 1.2, the jet deflected and attached to the upsurface of the cylinder (which was designated as the deflection mode). In-between the values of 1.0 and 1.2, the jet presented unsteady behavior—it sometimes oscillated and sometimes was deflected (which was denoted as the transition mode). The wake width in the oscillation mode decreased with increasing R, increased abruptly in the transition mode, and decreased with increase of R again in the deflection mode. The oscillation frequency in the wake varied inversely with did the the wake width. The oscillation signals detected in the wake and the jet had a 180o phase difference. Assisted by the flow visualization, the oscillation motion of the jet was induced by the oscillation motion of the vortical flow structure in the wake.

摘要 i Abstract ii 誌謝 iii 目錄 iv 符號索引 vii 表圖索引 ix 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 鈍體尾流 2 1.2.2射流振盪 9 1.3 研究目標 10 第二章 研究構思及實驗設備、儀器與方法 11 2.1 研究構思 11 2.2 實驗設備 12 2.2.1 風洞 12 2.2.2 方柱噴流模型 13 2.2.3 方柱的二維性 14 2.3 實驗儀器與方法 15 2.3.1 自由流速的偵測 15 2.3.2 煙線流場可視化 16 2.3.3雷射光頁 19 2.3.4 質點影像速度儀(Particle Image Velocimetry, PIV) 19 2.3.5 尾流渦漩逸放頻率的偵測 24 第三章 流場可視化 26 3.1 特徵模態分區 26 3.2 煙線流場可視化 27 3.2.1 方柱周圍流場之特徵模態 27 3.2.2 方柱周圍流場瞬時衍化過程 29 3.2.3 方柱迎風面停滯流之特性 33 3.3 噴流於橫風中之流場可視化 35 3.3.1 方柱上游細線對噴流之影響 35 3.3.2 噴流之瞬時流場衍化過程 37 3.3.3 噴流平均流場特性 38 3.4 方柱尾流平均流場特性 41 第四章 渦漩逸放的頻率與尾流寬度 44 4.1 尾流區渦漩流逸及其引致上游非穩態之頻率特性 45 4.2 噴流注射比對渦漩逸放失誤之影響 49 4.3 尾流寬度 49 4.4 統計上之特性 51 第五章 PIV量測之量化流場 55 5.1 瞬時之速度向量流線圖衍化 55 5.2 不同樣本平均之速度向量流線圖 57 5.3紊流強度分佈 58 5.4 渦度分佈 61 5.5 平均速度之量化分析 62 5.6 瞬時速度之量化分析 65 第六章 結論與建議 68 9.1 結論 68 9.2 建議 69 參考文獻 70

[1] Nakayama, Y. and Boucher, R. F., Introduction to Fluid Mechanics, Arnold, Great Britain, 1999.
[2] Lienhard, J. H., Synopsis of Lift Drag and Vortex Frequency Data for Rigid Circular Cylinders, Research Division Bulletin 300 , Washington State University, 1966.
[3] Huang, R. F., Chen, J. M., and Hsu, C. M., “Modulation of surface flow and vortex shedding of a circular cylinder in the subcritical regime by self-excited vibration rod,” Journal of Fluid Mechanics, Vol. 555, 2006, pp. 321-352.
[4] Zdravkovich, M. M., “Different modes of vortex shedding: an overview,” Journal of Fluids and Structures, Vol. 10, No. 5, 1996, pp. 427-437.
[5] Roshko, A, “On the wake and drag of bluff bodies,” Journal of Aeronautical Sciences, Vol. 22, No. 2, 1955, pp. 801.
[6] Tritton, D. J., “Experiments on the flow past a circular cylinder at low reynolds numbers,” Journal of Fluids Mechanics, Vol. 6, part 4, 1959, pp. 547-567.
[7] Etkin, B., Kovbaoher, G. K., and Keefe, R. T., “Acoustic radiation from a stationary cylinder in fluid stream (aeolian tones),” The Journal of the Acoustical Society of America, Vol. 29, No. 1, 1957, pp. 30-36.
[8] Weaver, W., “Wind-induced vibrations in antenna members,” Journal of the Engineering Mechanics Division, ASCE, Vol. 87, No. EM1, 1961, pp. 141-165.
[9] Gerrard, J. H., “An experimental investigation of the oscillating lift and drag of a circular cylinder shedding turbulent vortices,” Journal of Fluid Mechanics, Vol. 11, part 2, 1961, pp. 244-256.
[10] Roshko, A. “On the development of turbulent wakes from vortex streets,” NACA TN 2913, 1953.
[11] In, K. M., Choi, D. H. and Kim, M. U., “Two-dimensional viscous flow past a flat plate,” Fluid Dynamics Research, Vol. 15, No. 1, 1995, pp. 13-24.
[12] Dennis, S. C. R., Qiang, W., Coutanceau, M. and Launay, J. L., “Viscous flow normal to a flat plate at moderate reynolds numbers,” Journal of Fluid Mechaics, Vol. 248, 1993, pp. 605-635.
[13] Nakamura, Y., “Vortex shedding from bluff bodies and a universal strouhal number,” Journal of Fluids and Structures, Vol. 10, No. 2, 1996, pp. 159-171.
[14] Matsumoto, M., “Vortex shedding of bluff bodies: A review,” Journal of Fluids and Structures, Vol. 13, No. 7-8, 1999, pp. 791-811.
[15] Bearman, P. W. and Trueman, D. M., “An investigation of the flow around rectangular cylinders,” Aeronautical Quarterly, Vol. 23, 1972, pp. 229-237.
[16] Noda, H. and Nakayama, A., “Free-stream turbulence effects on the instantaneous pressure and forces on cylinders of rectangular cross section,” Experiments in Fluids, Vol. 34, No. 3, 2003, pp. 332-344.
[17] Okajima, A., “Strouhal numbers of rectangular cylinders,” Journal of Fluid Mechanics, Vol. 123, 1982, pp. 379-398.
[18] Yang, W. J., Flow Visualization III, Proceedings of the third international symposium on flow visualization, 1983, pp. 381-386.
[19] Huang, R. F., Lin, B. H., and Yen, S. C., “Time-average topological flow patterns and their Influence on vortex shedding of a square cylinder in cross flow at incidence,” Journal of Fluids and Structures, Vol. 26, No. 3, 2010, pp. 406-429.
[20] Luo, S. C., Chew, Y. T. and Ng, Y. T., “Characteristics of square cylinder wake transition flows,” Physics of Fluids, Vol. 15, No. 9, 2003, pp. 2549-2559.
[21] Rockwell, D. O., “Organized fluctuations due to flow past a square cross section cylinder,” Journal of Fluids Engineering, Vol. 99, 1977, pp. 511-516.
[22] Kwok, K. C. S., “Effects of turbulence on the pressure distribution around a square cylinder and possibility of reduction,” Journal of Fluids Engineering, Vol. 105, 1983, pp. 140-145.
[23] Chen, J. M. and Liu, C. H., “Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream,” International Journal of Heat and Fluid Flow, Vol. 20, No. 6, 1999, pp 592-597.
[24] Huang, R. F. and Lee, H. W., “Effects of Freestream Turbulence on Wing-Surface Flow and Aerodynamic Performance,” AIAA Journal, Vol. 36, No. 6, 1999, pp. 965-972.
[25] Roshko, A., “On the Wake and Drag of Bluff Bodies,” Journal of the Aerospace Science, Vol. 22, 1955, pp. 124-135.
[26] Simons, J. E. L., “Similarities Between Two-Dimensional and Axisymmetric Vortex Wakes,” Aeronautical Quarterly, Vol. 28, 1977, pp. 15-20.
[27] Levi, E., “A Universal Strouhal Law,” ASCE Journal of Engineering, Vol. 109, No. 3, 1983, pp. 718-727.
[28] Yahya Erkan Akansu*, Erhan Fırat, “Control of flow around a square prism by slot jet injection from the rear surface,” Experimental Thermal and Fluid Science, Vol. 34, 2010, pp. 906-914.
[29] Coanda, H. M., “Device for Deflecting a Stream of Elastic Fluid Projected into an Elastic Fluid,” United States Patent, No. 2052869, 1936.
[30] Newman, B. G., “The Deflection of Plane Jets by Adjacent Boundaries – Coanda Effect,” in Boundary Layer and Flow Control – Its Principles and Application, Vol. 1, Ed. Lachmann, G. V., Pergamon Press, New York, 1961, pp. 232-264.
[31] Tritton, D. J., Physical Fluid Dynamics, Second Edition, Oxford University Press, New York, 1988, pp. 150-152.
[32] Yamasaki, H. and Honda, S., “A Unified Approach to Hydrodynamic Oscillator Type Flowmeters,” Journal of fluid control, Vol. 13, 1981, pp. 1-17.
[33] Sichlichting, H.. Boundary Layer Theory, 7th ed, Mcgraw-Hill, New York, 1993, pp. 699.
[34] Batill, S. M. and Mueller, T. J., “Visualization of transition in the flow over an airfoil using the smoke-wire technique,” AIAA journal,
Vol. 19, No. 3, 1981, pp. 340-345.
[35] Flagan, R. C. and Seinfeld J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988, pp.
295-307.
[36] Tennekes, H. and Lumley, J. L., A first Course in Turbulence, MIT Press, Cambridge, 1972, PP. 8-103.

無法下載圖示 全文公開日期 2017/06/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE