簡易檢索 / 詳目顯示

研究生: 王文豪
Wen-Hao Wang
論文名稱: VNbMoTaWCrx高熵合金氮化物薄膜之微結構與性質評估
Microstructure and property evaluation of VNbMoTaWCrx high entropy alloy nitride thin films
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 王朝正
Chaur-Jeng Wang
李志偉
Jyh-Wei Lee
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 105
中文關鍵詞: VNbMoTaWNxVNbMoTaWCrxNy氮化高熵合金薄膜
外文關鍵詞: VNbMoTaWNx, VNbMoTaWCrxNy, high entropy alloy nitride thin films
相關次數: 點閱:162下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究分為兩個部分,第一部分以等原子比VNbMoTaW高熵合金靶材進行濺鍍,並於製程中控制不同氮氣通量,以製備不同氮含量之高熵合金薄膜;在第二部分使用Cr靶材與VNbMoTaW高熵合金靶共濺鍍,並改變不同氮氣通量來鍍製薄膜。本研究探討不同氮氣流量對於五元VNbMoTaWNx與六元VNbMoTaWCrxNy高熵合金薄膜之元素比例、微觀結構、硬度、沉積速率、附著性、耐腐蝕性等性質變化。
實驗結果顯示,本研究鍍製之VNbMoTaW與VNbMoTaWCrx薄膜均具有負的混合焓、小的原子尺寸差及高的混合熵值,同時也符合混合熵值高於1.5R的高熵合金定義,因此本次鍍製的高熵合金可被稱為固溶體高熵合金;本實驗鍍製VNbMoTaW薄膜為BCC結構,在氮含量13.8 at. %時轉變成過渡相BCC結構,當薄膜中氮含量提高至22.0 at. %時則為純FCC結構。VNbMoTaWNx晶粒尺寸與晶格常數隨著氮含量增加而上升;而薄膜硬度、沉積速率、腐蝕阻抗則隨之下降,薄膜甚至出現許多缺陷。VNbMoTaWCrx薄膜為BCC結構,直到氮含量提高至34.0 at. %時才完全轉變成FCC結構。VNbMoTaWCrxNy薄膜的晶粒尺寸、晶格常數、硬度、腐蝕速率皆隨著氮含量增加而上升,沉積速率則呈現下降趨勢。本研究發現薄膜添加鉻元素可以提升薄膜在氯化鈉水溶液中的抗腐蝕性質,但是對機械性質的提升貢獻不大;而含氮13.8 at.%的VNbMoTaWN薄膜具有高硬度與良好的附著性以及極佳的抗腐蝕能力,因此具有極大的工業應用潛力。


This study can be divided into two parts. In the first part, the VNbMoTaWNx high-entropy alloy thin films with different nitrogen contents were fabricated using an equal atomic ratio VNbMoTaW high-entropy alloy target and under different nitrogen flow rates. In the second part, the the VNbMoTaWCrxNy high-entropy alloy thin films containing different nitrogen contents were grown by a co-sputtering process using a Cr target and a high-entropy alloy target. Effects of nitrogen flow rates on the chemical compositions, microstructure, deposition rate, hardness, adhesion, and corrosion resistance of the five elements VNbMoTaWNx and six elements VNbMoTaWCrxNy high-entropy alloy thin films were discussed.
The experimental results showed that the VNbMoTaW and VNbMoTaWCrx films exhibited negative mixing enthalpy, smaller atomic rauis difference and high mixing entropy, higher than 1.5R, which met the definition of high-entropy alloy. Hence, the high-entropy alloy thin films in this work can be defined as solid solution high-entropy alloy. The VNbMoTaW film was a BCC structure and it further changed into a transition of BCC structure when 13.8 at.% nitrogen was added. The phase structure was pure FCC when the nitrogen content in the VNbMoTaWNx film increased to 22.0 at. %. The grain size and lattice constant of VNbMoTaWNx increased with increasing nitrogen content. Meanwhile, the hardness, deposition rate and corrosion resistance of the VNbMoTaWNx film decreased with increasing nitrogen content. Even more film defects were found when the nitrogen content was higher. The VNbMoTaWCrx thin film had a BCC structure and it completely transformed into an FCC structure when the nitrogen content increased to 34.0 at. %. The grain size, lattice constant, hardness, and corrosion rate of VNbMoTaWCrxNy thin films increased with increase nitrogen content, whereas the deposition rate showed a decreasing tendency. This study found that the addition of chromium to the VNbMoTaW film can improve its corrosion resistance in sodium chloride solution, but it had no effect on the improvement of mechanical properties. We can conclude that the 13.8 at.% nitrogen contained VNbMoTaWN film had high hardness, good adhesion and excellent corrosion resistance, which made it has a great potential for industrial application.

誌謝..............................................................................i 中文摘要..........................................................................ii ABSTRACT........................................................................iii 第一章 緒論.......................................................................1 1.1 研究背景......................................................................1 1.2 研究動機......................................................................2 第二章 文獻回顧....................................................................3 2.1 脈衝磁控反應式濺鍍..............................................................3 2.1.1 濺鍍原理....................................................................3 2.1.2 磁控濺鍍....................................................................4 2.1.3 脈衝直流磁控濺鍍.............................................................6 2.1.4 反應式濺鍍..................................................................7 2.1.5 薄膜成長機制................................................................8 2.1.6 固溶體形成機制.............................................................10 2.2 高熵合金介紹.................................................................12 2.2.1 熱力學: 高熵效應...........................................................13 2.2.2 結構: 晶格畸變效應.........................................................14 2.2.3 動力學: 緩慢擴散效應.......................................................15 2.2.4 性能: 雞尾酒效應...........................................................15 2.3 混合熱焓與價電子濃度對高熵相結構影響............................................16 2.4 耐火高熵合金.................................................................20 2.4.1 結構表現..................................................................22 2.4.2 高溫性能..................................................................22 2.5 氮化高熵合金.................................................................24 第三章 實驗方法..................................................................25 3.1 實驗方法....................................................................25 3.1.1 試片製備與清洗.............................................................25 3.1.2 表面粗糙化與漸進層.........................................................26 3.1.3 改變鍍製VNbMoTaWNx之氮氣流量...............................................29 3.1.4 改變鍍製VNbMoTaWCrxNy之氮氣流量............................................30 3.2 實驗流程....................................................................31 3.3製程儀器......................................................................32 3.3.1鍍膜設備....................................................................32 3.4 分析儀器....................................................................33 3.4.1 成分分析..................................................................33 3.4.2 微結構分析................................................................33 3.4.3 晶體結構分析..............................................................35 3.4.4 薄膜硬度分析..............................................................36 3.4.5 附著性分析................................................................37 3.4.6 耐蝕性分析................................................................38 第四章 實驗結果.................................................................40 4.1 控制N2流量鍍製VNbMoTaWNx氮化薄膜.............................................40 4.1.1 成分分析.................................................................40 4.1.2 晶體結構分析..............................................................42 4.1.3 表面形貌及橫截面結構分析...................................................48 4.1.4 硬度分析.................................................................49 4.1.5 附著性分析...............................................................52 4.1.6 耐蝕性分析...............................................................53 4.2 控制N2流量鍍製VNbMoTaWCrxNy氮化薄膜.........................................56 4.2.1 成分分析.................................................................56 4.2.2晶體結構分析...............................................................58 4.2.3 表面形貌及橫截面結構分析...................................................63 4.2.4 硬度分析.................................................................64 4.2.5 附著性測試...............................................................67 4.2.6 耐蝕性分析...............................................................68 第五章 實驗討論................................................................71 5.1 氮化VNbMoTaWCrxNy高熵合金晶體結構...........................................71 5.1.1 XRD結果討論..............................................................71 5.1.2 價電子濃度與原子尺寸差對於晶體結構之影響討論.................................73 5.2 氮含量對VNbMoTaWCrxNy高熵合金硬度影響........................................75 5.2.1 氮化造成硬度下降之原因探討.................................................75 5.2.2 晶體結構造成硬度下降之原因探討.............................................78 5.3 鉻含量及氮含量對VNbMoTaWCrxNy高熵合金耐蝕性質影響.............................80 5.3.1 Cr摻雜對VNbMoTaW高熵合金耐蝕性質影響.......................................80 5.3.2 氮含量對VNbMoTaWNx高熵合金耐蝕性質影響.....................................80 5.3.3 氮含量對VNbMoTaWCrxNy高熵合金耐蝕性質影響..................................82 5.3.4 小結....................................................................83 第六章 結論....................................................................86 附錄...........................................................................88 參考文獻........................................................................91

[1] W. Klement, R. H. Willens, POL Duwez "Non-crystalline structure in solidified gold–silicon alloys." Nature 187.4740 (1960): 869-870.
[2] K. H. Huang, J. W. Yeh. "A study on the multicomponent alloy systems containing equal-mole elements." Hsinchu: National Tsing Hua University (1996): 1-93.
[3] J. W. Yeh, S.‐K. Chen, S.‐J. Lin, J.‐Y. Gan, T.‐S. Chin, T.‐T. Shun, C.‐H. Tsau, S.‐Y. Chang "Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes." Advanced Engineering Materials 6.5 (2004): 299-303.
[4] J. W. Yeh "Alloy design strategies and future trends in high-entropy alloys." Jom 65.12 (2013): 1759-1771.
[5] P. J. Kelly, and R. Derek Arnell. "Magnetron sputtering: a review of recent developments and applications." Vacuum 56.3 (2000): 159-172.)
[6] P. J. Kelly, and R. D. Arnell. "The influence of magnetron configuration on ion current density and deposition rate in a dual unbalanced magnetron sputtering system." Surface and Coatings Technology 108 (1998): 317-322.
[7] S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider and F. Milde "Pulsed magnetron sputter technology." Surf. Coat. Technol 61 (1993): 331-337.
[8] L. B. Jonsson, T. Nyberg, I. Katardjiev, S. Berg "Frequency response in pulsed DC reactive sputtering processes."Thin Solid Films 365.1 (2000): 43-48.
[9] D. Depla, R. De. Gryse "Target poisoning during reactive magnetron sputtering: Part I: the influence of ion implantation." Surface and Coatings Technology 183.2-3 (2004): 184-189.
[10] J. Musil, P. Baroch, J. Vlcek, K. H. Nam, J. G. Han "Reactive magnetron sputtering of thin films: present status and trends." Thin solid films 475.1-2 (2005): 208-218.
[11] C. Y. Chuang, J. W. Lee, C. L. Li, J. P. Chu "Mechanical properties study of a magnetron-sputtered Zr-based thin film metallic glass." Surface and Coatings Technology 215 (2013): 312-321.
[12] I. Petrov, P. B. Barna, L. Hultman, J. E. Greene "Microstructural evolution during film growth." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21.5 (2003): S117-S128.
[13] Z. Wang, Y. Huang, Y. Yang, J. Wang, C. T. Liu "Atomic-size effect and solid solubility of multicomponent alloys." Scripta Materialia 94 (2015): 28-31.
[14] W. Zhang, P. K. Liaw, Y. Zhang "Science and technology in high-entropy alloys." Science China Materials 61.1 (2018): 2-22.
[15] Z. P. Lu, H. Wang, M. W. Chen, I. Baker, J. W. Yeh, C. T. Liu, T. G. Nieh "An assessment on the future development of high-entropy alloys: summary from a recent workshop." Intermetallics 66 (2015): 67-76.
[16] M. C. Gao, J. W. Yeh, P. K. Liaw, Y. Zhang "High-entropy alloys." Cham: Springer International Publishing (2016)
[17] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw "Solid‐solution phase formation rules for multi‐component alloys." Advanced Engineering Materials 10.6 (2008): 534-538.
[18] O. A. Waseem, H. J. Ryu "Powder metallurgy processing of a W x TaTiVCr high-entropy alloy and its derivative alloys for fusion material applications." Scientific reports 7.1 (2017): 1-14.
[19] Y. J. Zhou, Y. Zhang, Y. L. Wang, G. L. Chen "Solid solution alloys of Al Co Cr Fe Ni Ti x with excellent room-temperature mechanical properties." Applied physics letters 90.18 (2007): 181904.
[20] K. Y. Tsai, M. H. Tsai, J. W. Yeh "Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys." Acta Materialia 61.13 (2013): 4887-4897.
[21] S. Ranganathan "Alloyed pleasures: multimetallic cocktails." Current science 85.5 (2003): 1404-1406.
[22] Y. Cao, L. Yong, L. Bin, W. Zhang, J. Wang, D. U. Meng "Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys." Transactions of Nonferrous Metals Society of China 29.7 (2019): 1476-1483.
[23] R Chen, G Qin, H Zheng, L Wang, Y Su, Y. L. Chiu, H. Ding, J. Guo, H. Fu "Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility." Acta Materialia 144 (2018): 129-137.
[24] Y. J. Zhou, Y. Zhang, Y. L. Wang, G. L. Chen "Solid solution alloys of Al Co Cr Fe Ni Ti x with excellent room-temperature mechanical properties." Applied physics letters 90.18 (2007): 181904.
[25] J. Chen, P. Niu, Y. Liu, Y. Lu, X. Wang, Y. Peng, J. Liu "Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy." Materials & Design 94 (2016): 39-44.
[26] S. Guo, C. Ng, J. Lu, C. T. Liu "Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys." Journal of Applied Physics 109.10 (2011): 103505.
[27] S. Guo, C. T. Liu. "Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase." Progress in Natural Science: Materials International 21.6 (2011): 433-446.
[28] D. L. Smith, M. C. Billone, K. Natesan "Vanadium-base alloys for fusion first-wall/blanket applications." International Journal of Refractory Metals and Hard Materials 18.4-5 (2000): 213-224.]
[29] M. H. Ras "The use of vanadium to enhance localised corrosion resistance in 18% chromium ferritic stainless steel. " Diss. University of Pretoria, 2007.
[30] E. N. Sheftel, O. A. Bannykh "Niobium—Base alloys." International Journal of Refractory Metals and Hard Materials 12.5 (1993): 303-314.
[31] R. T. Begley, J. H. Bechtold "Effect of alloying on the mechanical properties of niobium." Journal of the Less Common Metals 3.1 (1961): 1-12.
[32] N. Suutala and M. Kurkela, Proc. Stainless Steel- 84, Gothenburg, pp 240-247, 1984
[33] R. W. Buckman "New applications for Tantalum and tantalum alloys." Jom 52.3 (2000): 40-41.
[34] W. Köck, P. Paschen "Tantalum—processing, properties and applications." Jom 41.10 (1989): 33-39.
[35] J. Bhattarai, E. Akiyama, H0 Habazaki, A. Kawashima, K. Asami, K. Hashimoto "Electrochemical and XPS studies of the passivation behavior of sputter-deposited Cr–Ta alloys in 12 M HCl," Corrosion Science, vol. 40, pp. 1587-1604, 1998.
[36] K. H. Min, K. C. Chun, K. B. Kim "Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 14.5 (1996): 3263-3269.
[37] K. Q. Qiu, A. M. Wang, H. F. Zhang, B. Z. Ding, Z. Q. Hu "Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite." Intermetallics 10.11-12 (2002): 1283-1288.) (Ohtsuki, Madoka, et al. "Tungsten-based metallic glasses with high crystallization temperature, high modulus and high hardness." Materials transactions 46.1 (2005): 48-53.
[38] Y. Qian, C. Ma, D. Niu, J. Xu, M. Li "Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels." Corrosion science 74 (2013): 424-429.
[39] S.C. Tjong, ISH International 31, No.7, pp 738-743, 1991
[40] E.A. Lizlovs and A.P. Bond, J. Electrochem. Soc. 122, No.6, pp 719-722, 1975
[40] O. N. Senkov, G. B. Wilks, D. B. Miracle, C.P. Chuang, P. K. Liaw "Refractory high-entropy alloys." Intermetallics 18.9 (2010): 1758-1765.
[41] O. N. Senkov, G. B. Wilks, J. M. Scott, D. B. Miracle "Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys." Intermetallics 19.5 (2011): 698-706.
[42] X. B. Feng, J. Y. Zhang, Y. Q. Wang, Z. Q. Hou, K. Wu, G. Liu, J. Sun "Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films." International Journal of Plasticity 95 (2017): 264-277.
[43] W. Y. H Liew, J. L. L. Jie, L. Y. Yan, J. Dayou, C. S. Sipaut, M. F.B. Madlan "Frictional and wear behaviour of AlCrN, TiN, TiAlN single-layer coatings, and TiAlN/AlCrN, AlN/TiN nano-multilayer coatings in dry sliding." Procedia Engineering 68 (2013): 512-517.
[44] J. Lin, J. J. Moore, B. Mishra, M. Pinkas, W. D. Sproul "Nano-structured CrN/AlN multilayer coatings synthesized by pulsed closed field unbalanced magnetron sputtering." Surface and Coatings Technology 204.6-7 (2009): 936-940.
[45] A. Zhecheva, S. Malinov, W. Sha "Titanium alloys after surface gas nitriding." Surface and Coatings Technology 201.6 (2006): 2467-2474.
[46] K. Funatani "Low-temperature salt bath nitriding of steels." Metal Science and Heat Treatment 46.7-8 (2004): 277-281.
[47] W. Liang "Surface modification of AISI 304 austenitic stainless steel by plasma nitriding." Applied Surface Science 211.1-4 (2003): 308-314.
[48] Y. Wang, Y. Yang, H. Yang, M. Zhang, S. Ma, J. Qiao "Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy." Materials Chemistry and Physics 210 (2018): 233-239.
[49] Y. Wang, Y. Yang, H. Yang, M. Zhang, J. Qiao "Effect of nitriding on the tribological properties of Al1. 3CoCuFeNi2 high-entropy alloy." Journal of Alloys and Compounds 725 (2017): 365-372.
[50] W. Y. Tang, M. H. Chuang, H. Y. Chen, J. W. Yeh "Microstructure and mechanical performance of new Al0. 5CrFe1. 5MnNi0. 5 high-entropy alloys improved by plasma nitriding." Surface and Coatings Technology 204.20 (2010): 3118-3124.
[51] R. E. Reed-Hill, R. Abbaschian, R. Abbaschian, "Physical metallurgy principles." Vol. 17. New York: Van Nostrand, 1973.
[52] W. C. Oliver, G. M. Pharr "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments." Journal of materials research 7.6 (1992): 1564-1583.
[53] J. Blažek, J. Musil, P. Stupka, R. Čerstvý, J. Houška "Properties of nanocrystalline Al–Cu–O films reactively sputtered by DC pulse dual magnetron." Applied Surface Science 258.5 (2011): 1762-1767.
[54] O. N. Senkov, D. B. Miracle, and K. J. Chaput, " Development and exploration of refractory high entropy alloys-A review." Materials Research Society, Volume 33, p.19, 2018.
[55] C. Andrade, C. Alonso "Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method." Materials and Structures 37.9 (2004): 623-643.
[56] S. C. Liang, D. C. Tsai, Z. C. Chang, H. S. Sung, Y. C. Lin, Y.J Yeh, M. J. Deng, F. S. Shieu "Structural and mechanical properties of multi-element (TiVCrZrHf) N coatings by reactive magnetron sputtering." Applied surface science 258.1 (2011): 399-403.
[57] D. C. Tsai, Y. L. Huang, S. R. Lin, S. C. Liang, F. S. Shieu "Effect of nitrogen flow ratios on the structure and mechanical properties of (TiVCrZrY) N coatings prepared by reactive magnetron sputtering." Applied Surface Science 257.4 (2010): 1361-1367.
[58] P. Hones, N. Martin, M. Regula, F. Levy "Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films." Journal of Physics D: Applied Physics 36.8 (2003): 1023.
[59] D. C. Tsai, Y. L. Huang, S. R. Lin, S. C. Liang, F. S. Shieu "Effect of nitrogen flow ratios on the structure and mechanical properties of (TiVCrZrY) N coatings prepared by reactive magnetron sputtering." Applied Surface Science 257.4 (2010): 1361-1367.
[60] Carlton, C. E., and P. J. Ferreira. "What is behind the inverse Hall–Petch effect in nanocrystalline materials?." Acta Materialia 55.11 (2007): 3749-3756.

QR CODE