簡易檢索 / 詳目顯示

研究生: 何漢祥
Han-Hsiang Ho
論文名稱: 太陽能可調光隔熱玻璃窗之開發與應用
Development and application of light adjusting heat insulation solar window
指導教授: 楊錦懷
Chin-Huai Young
口試委員: 陳明志
Ming-Jhih Chen
蘇南
Nan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 138
中文關鍵詞: 太陽能可調光隔熱玻璃窗光電玻璃PDLC獨立型光電系統
外文關鍵詞: solar light adjustable heat-insulation glass windows, solar glass, PDLC, stand alone photovoltaic system
相關次數: 點閱:179下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為將高分子分散型液晶(Polymer-dispersed Liquid Crystal , PDLC)薄膜結合太陽能透光模組,開發太陽能可調光隔熱玻璃窗,利用太陽能玻璃的高透光性、紫外線阻隔之特性,結合PDLC薄膜調控電壓達變色效果,將兩者的優勢應用於建築智慧窗戶,不但擁有發電、節能及調光功能,搭配蓄電池、逆變器,使其成為小型獨立型光電系統,並對材料進行光學試驗、熱學試驗,得出各層材料的光熱學性質,再經由軟體模擬出太陽能可調光隔熱玻璃窗的材料性質,開發出第一代太陽能可調光隔熱玻璃窗,以第一代產品為基礎改良後,開發出節能效益更高的第二代太陽能可調光隔熱玻璃窗,再以軟體模擬建物的發電量及耗能量,探討在不同氣候型態的地點,其發電及耗能量之差異,最後對太陽能可調光隔熱玻璃窗做經濟效益及環境效益的評估。
    從研究結果可以發現,改良後的第二代太陽能可調光隔熱玻璃窗,對於建物而言,在光學性質的部分,太陽能可調光隔熱玻璃窗能降低日光穿透率、可見光穿透率,有效的調節室內照明,在熱學性質的部分,與第一代產品相比,大幅降低熱傳導係數(U值)與遮蔽係數(SC值),有效阻隔外界的傳導熱與太陽輻射熱。從軟體模擬結果可知,相較於使用一般玻璃的帷幕大樓,若使用太陽能可調光隔熱玻璃窗做為玻璃帷幕牆,不但達到節能省空調之效益、降低電力需求、減少碳排放量,同時能在PDLC薄膜處於霧面狀態時,可做為大面積的投影屏幕,用來投影大面積商用廣告,使其在夜晚無太陽能發電功能時,亦有其他附加功能使用。本研究開發太陽能可調光隔熱玻璃窗,以試驗和模擬的方式進行隔熱和節能之評估,並且設計出小型獨立型光電系統,無需連接市電,可利用自身太陽能玻璃產生的電能直接使用,且具備有隔熱、遮光功能,還可做為投影布幕使用,在提升建築能源效率及減少碳排放量的同時,也能兼顧室內環境的舒適度與都市美學。


    This research focuses on integrating polymer-dispersed liquid crystal (PDLC) thin films with solar transparent modules to develop solar adjustable light and heat-insulated glass windows. By utilizing the high transparency and UV-blocking properties of solar glass, combined with the voltage-regulated color-changing effect of PDLC thin films, the advantages of both technologies are applied to smart windows in buildings. This not only provides power generation, energy efficiency, and dimming functionality but also creates a small standalone photovoltaic system when paired with batteries and inverters. The study involves optical and thermal testing of materials to determine their optical and thermal properties, followed by software simulations to analyze the material properties of solar adjustable light and heat-insulating glass windows, such as thermal conductivity (U-value), shading coefficient (SC-value), and visible light transmittance. The first-generation solar adjustable light and heat-insulating glass windows are developed based on these findings. After further improvements based on the first-generation product, the second-generation solar adjustable light and heat-insulating glass windows with higher energy-saving benefits are developed. Software simulations are used to evaluate the electricity generation and energy consumption of the windows in different climatic conditions. Finally, an assessment of the economic and environmental benefits of the solar adjustable light and heat-insulating glass windows is conducted.
    From the research results, it can be observed that the improved second-generation solar adjustable light and heat-insulating glass windows provide several advantages for buildings. In terms of optical properties, these windows can reduce daylight transmittance and visible light transmittance, effectively adjusting indoor lighting. In terms of thermal properties, compared to the first-generation product, the windows significantly reduce the thermal conductivity (U-value) and shading coefficient (SC-value), effectively blocking external conductive heat and solar radiation. From the software simulation results, it is evident that using solar adjustable light and heat-insulating glass windows as curtain walls in glass-clad buildings, instead of conventional glass, not only achieves energy-saving benefits, reduced air conditioning requirements, and decreased power demand, but also allows for large-scale projection screens when the PDLC films are in a frosted state. These screens can be used for projecting large commercial advertisements, providing additional functionality even when solar power generation is not available at night. This study develops solar adjustable light and heat-insulating glass windows, evaluates their thermal insulation and energy-saving performance through experiments and simulations, and designs a small standalone photovoltaic system that operates independently of the grid by utilizing the electricity generated by the solar glass itself. The windows offer insulation and shading functions, enhancing building energy efficiency, reducing carbon emissions, and considering indoor comfort and urban aesthetics.

    摘要 I Abstract II 誌謝 IV 總目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法 3 1.4 研究流程 4 第二章 文獻回顧 5 2.1 太陽能能源及太陽能電池之理論及應用 5 2.1.1 太陽能能源 5 2.1.2 太陽能電池 6 2.1.3 結晶矽太陽能電池 7 2.1.4 非晶矽薄膜太陽能電池 10 2.2 建物一體太陽能光電 14 2.3 建築環境性質 16 2.3.1 建築熱環境 16 2.3.2 建築光環境 18 2.3.3 建築環境舒適度 19 2.4 節能玻璃性質與計算理論 20 2.4.1 單層玻璃 20 2.4.2 複層玻璃 21 2.4.3 太陽能透光模組 22 2.4.4 光學性質之計算理論 23 2.4.5 熱學性質之計算理論 27 2.5 太陽能可調光隔熱玻璃窗原理及應用 30 2.5.1 高分子分散液晶之調光原理及日照特性 31 2.5.2 獨立型光電系統 34 第三章 試驗設計與流程 36 3.1 試驗設計概要 36 3.2 試驗參數說明 37 3.2.1試驗材料參數 37 3.2.2 Tandem Ag太陽能透光模組 38 3.2.3 太陽能可調光隔熱玻璃窗設計 39 3.3 光學試驗 40 3.3.1 試驗目的 40 3.3.2 試驗參數 40 3.3.3 試驗設備 41 3.3.4 試驗流程 42 3.4 熱學試驗 43 3.4.1 試驗目的 43 3.4.2 試驗參數 43 3.4.3 試驗設備 44 3.4.4 試驗流程 45 3.5 戶外光熱學試驗 46 3.5.1 試驗目的 46 3.5.2 試驗參數 46 3.5.3 試驗設備 47 3.5.4 試驗方法 49 3.6 戶外標準照度電力試驗 50 3.6.1 試驗目的 50 3.6.2 試驗參數 50 3.6.3 試驗設備 51 3.6.4 試驗方法 52 3.7 獨立型電力系統可行性評估 53 3.7.1 試驗目的 53 3.7.2 試驗參數 53 3.7.3試驗方法 54 3.8玻璃窗設計之軟體分析 55 3.8.1 試驗目的 55 3.8.2 試驗參數 55 3.8.3 試驗方法 56 3.9 建築發電模擬分析 57 3.9.1 試驗目的 57 3.8.2 試驗參數 57 3.8.3試驗方法 58 3.9 建築耗能模擬分析 59 3.9.1 試驗目的 59 3.9.2 試驗參數 59 3.9.3試驗方法 60 第四章 試驗結果與分析 61 4.1 光學試驗結果與分析 61 4.2 熱學試驗結果與分析 73 4.3 戶外光熱學試驗結果與分析 77 4.4 戶外標準電力試驗結果與分析 84 4.5 獨立型電力系統可行性評估結果與分析 86 4.6 玻璃窗設計之軟體分析 89 4.7 建築模擬結果與分析 96 4.7.1 建築發電模擬結果與分析 97 4.7.2 建築耗能模擬結果與分析 100 4.7.3 建築節能效益模擬結果與分析 112 4.7.4 建築經濟及環境效益模擬結果與分析 114 第五章 結論與建議 117 5.1 結論 117 5.2 建議 119 參考文獻 120

    林明獻, & 光電科學. (2008). 太陽電池技術入門 (修訂版). 全華圖書.
    顧鴻濤, & 電機工程. (2008). 太陽能電池元件導論: 材料, 元件, 製程, 系統. 全威圖書.
    詹逸民, 葉昱均. (2008). 矽薄膜太陽電池製程技術. 工業材料雜誌, 編號 258期.
    Shukla, A. K., Sudhakar, K., & Baredar, P. (2017). Recent advancement in BIPV product technologies: A review. Energy and Buildings, 140, 188-195.
    Ghosh, A. (2022). Fenestration integrated BIPV (FIPV): a review. Solar Energy, 237, 213-230.
    葉歆. (1996). 建築熱環境. 清華大學出版社有限公司.
    陳啟中, & 建築工程. (2018). 建築物理概論. 詹氏.
    何明錦, 李訓谷, 王佑萱, 蔡介峰, & 黃尊澤. (2007). 節能玻璃設計方法之建立. 建築學報, (62_S), 19-33.
    Lampert, C. M. (2003). Large-area smart glass and integrated photovoltaics. Solar energy materials and solar cells, 76(4), 489-499.
    Iluyemi, D. C., Nundy, S., Shaik, S., Tahir, A., & Ghosh, A. (2022). Building energy analysis using EC and PDLC based smart switchable window in Oman. Solar Energy, 237, 301-312.
    Dussault, J. M., Gosselin, L., & Galstian, T. (2012). Integration of smart windows into building design for reduction of yearly overall energy consumption and peak loads. Solar Energy, 86(11), 3405-3416.
    Cupelli, D., Nicoletta, F. P., Manfredi, S., Vivacqua, M., Formoso, P., De Filpo, G., & Chidichimo, G. (2009). Self-adjusting smart windows based on polymer-dispersed liquid crystals. Solar Energy Materials and Solar Cells, 93(11), 2008-2012.
    Ghosh, A., & Mallick, T. K. (2018). Evaluation of optical properties and protection factors of a PDLC switchable glazing for low energy building integration. Solar Energy Materials and Solar Cells, 176, 391-396.
    Ghosh, A., Norton, B., & Mallick, T. K. (2018). Daylight characteristics of a polymer dispersed liquid crystal switchable glazing. Solar Energy Materials and Solar Cells, 174, 572-576.
    Baetens, R., Jelle, B. P., & Gustavsen, A. (2010). Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Solar energy materials and solar cells, 94(2), 87-105.
    Hemaida, A., Ghosh, A., Sundaram, S., & Mallick, T. K. (2020). Evaluation of thermal performance for a smart switchable adaptive polymer dispersed liquid crystal (PDLC) glazing. Solar Energy, 195, 185-193.
    Lampert, C. M. (1998). Smart switchable glazing for solar energy and daylight control. Solar energy materials and solar cells, 52(3-4), 207-221.
    Mathew, V., Kurian, C. P., & Augustine, N. (2022). Spectral, visual, thermal, energy and circadian assessment of PDLC glazing in warm and humid climate. Solar Energy, 241, 576-583.
    劉晉豪. (2019). 高反射鍍膜太陽能節能玻璃研發與應用. 國立臺灣科技大學營建工程學系, pp.90.
    葉岱怡. (2019). 單中空Low-E太陽能節能玻璃之研發與應用. 國立臺灣科技大學營建工程學系, pp.122.
    Macrelli, G. (1995). Optical characterization of commercial large area liquid crystal devices. Solar energy materials and solar cells, 39(2-4), 123-131.

    無法下載圖示
    全文公開日期 2024/07/24 (校外網路)
    全文公開日期 2024/07/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE