簡易檢索 / 詳目顯示

研究生: 陳建勛
Jian-Xun Chen
論文名稱: 鋯鈦酸鉛/聚偏二氟乙烯-三氟乙烯壓電複合薄膜製備及其應用
Fabrication and Application of PZT/P(VDF-TrFE) Piezoelectric Composite Films
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 110
中文關鍵詞: 壓電薄膜十四烷基磷酸退火極化鋯鈦酸鉛聚偏二氟乙烯-三氟乙烯壓電鞋
外文關鍵詞: piezoelectric film, tetradecyl phosphoric acid, annealing, poling, PZT, P(VDF-TrFE), piezoelectric shoes
相關次數: 點閱:234下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,人類對於能源危機愈來愈關注,可植入和便攜式電子產品的發展需可持續性的能源供應,例如太陽能、風能、熱能或環境上的機械震動能。從居禮兄弟發現壓電效應至今已有上百年,但效率不佳,因此還停留在研究階段。其中PVDF具有較高的壓電係數,近年來有期刊指出,P(VDF-TrFE)中的TrFE能使P(VDF-TrFE)產生自發性極化,能有較高的壓電係數。壓電聚合物P(VDF-TrFE)兼具韌性及不錯的壓電效率,本研究將壓電聚合物P(VDF-TrFE)薄膜利用退火處理提升整體結晶度,進一步透過極化處理的方式提升薄膜壓電效果,並且添加PZT陶瓷,PZT陶瓷屬於鈣鈦礦結構,擁有不錯的壓電效應,本實驗添加PZT陶瓷來提升P(VDF-TrFE)共聚物整體的壓電響應,並且測試在循環壓力290N下,擁有1.958V的電壓輸出。本實驗為了進一步分散PZT陶瓷顆粒在P(VDF-TrFE)基體上,首先合成十四烷基磷酸,並且再更進一步表面改質PZT陶瓷添加於P(VDF-TrFE)基體上,由於PZT表面的十四烷基磷酸能使PZT不易聚集而穩定分散於高分子溶液,使具壓電響應的PZT均勻分散於P(VDF-TrFE)薄膜,讓整體的壓電響應更進一步提升,並且測試結果顯示經過改質的PZT在10wt%添加量下,TDPA-PZT 10wt% / P(VDF-TrFE)的壓電係數為27 pC/N,並且在循環壓力290N下,擁有3.426V,改質過後的PZT與原始PZT相比擁有更佳的壓電響應。因此本研究利用簡單的製程製備出高壓電係數的壓電薄膜,說明該壓電薄膜具備商業潛在性。


In recent years, mankind has paid more and more attention to the energy crisis. The development of implantable and portable electronic products requires sustainable energy supply, such as solar energy, wind energy, thermal energy, or environmental mechanical vibration energy. It has been hundreds of years since the Curie brothers discovered the piezoelectric effect, but the efficiency is not good, so it is still in the research stage. Among them, PVDF has a higher piezoelectric coefficient. In recent years, journals have pointed out that TrFE in P(VDF-TrFE) can make P(VDF-TrFE) produce spontaneous polarization and have a higher piezoelectric coefficient. Piezoelectric polymer P(VDF-TrFE) has both toughness and good piezoelectric efficiency. In this study, the piezoelectric polymer P(VDF-TrFE) film is annealed to increase the overall crystallinity, and further improved by polarization treatment. Thin-film piezoelectric effect, and adding PZT ceramics. PZT ceramics belong to the perovskite structure and have a good piezoelectric effect. In this experiment, PZT ceramics are added to improve the overall piezoelectric response of the P(VDF-TrFE) copolymer, and the test is in the loop with a pressure of 290N, it has a voltage output of 1.958V. In this experiment, in order to further disperse the PZT ceramic particles on the P(VDF-TrFE) matrix, first synthesize tetradecyl phosphoric acid, and then further modify the surface of the PZT ceramic and add it to the P(VDF-TrFE) matrix. Because the tetradecyl phosphoric acid on the surface of PZT can make PZT difficult to aggregate and stably disperse in the polymer solution, the PZT with piezoelectric response is evenly dispersed in the P(VDF-TrFE) film, so that the overall piezoelectric response is further improved, and the test results It shows that the piezoelectric coefficient of TDPA-PZT 10wt% / P(VDF-TrFE) is 27 pC/N under the modified PZT at 10wt% addition, and it has 3.426V under the circulating pressure of 290N. The modified PZT has better piezoelectric response than original PZT. Therefore, this study used a simple process to prepare a piezoelectric film with a high-voltage electrical coefficient, indicating that the piezoelectric film has commercial potential.

摘要 i Abstract ii 目錄 iv 圖目錄 viii 表目錄 xiv 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2-1 正/逆壓電效應(Piezoelectric Effect) 3 2-2 壓電係數(Piezoelectric coefficient) 5 2-3 壓電材料(Piezoelectric materials) 6 2-4 壓電材料應用 9 2-5 聚偏二氟乙烯-三氟乙烯(poly(vinylidenefluoride-co-trifluoroethylene),P(VDF-TrFE)) 10 2-6 增加 P(VDF-TrFE)之β相方法 12 2-6-1退火處理(Annealing) 12 2-6-2極化處理 16 2-6-3熱拉伸方法 20 2-6-4添加誘導β相之填充物 23 2-7 Beer-Lambert Law 24 2-8 鋯鈦酸鉛(Lead zirconate titanate) 25 2-9 聚偏二氟乙烯的電活性β和γ相的鑑定和定量 26 第三章 實驗方法 27 3.1 實驗流程 27 3.2 壓電能量收集器(PEH)的製造 29 3.2.1 鋯鈦酸鉛陶瓷熱處理 29 3.2.2 聚偏二氟乙烯-三氟乙烯P(VDF-TrFE)溶液 29 3.2.3 聚偏二氟乙烯-三氟乙烯/鋯鈦酸鉛複合壓電薄膜 29 3.2.4 1-十四烷基磷酸Tetradecylphosphonic acid(TDPA)合成與PZT顆粒的功能化 31 3.3 實驗藥品 32 3.4 實驗儀器 36 3.4.1 實驗設備 36 3.4.2 實驗分析儀器 36 3.5 鑑定及儀器分析原理 38 3.5.1 X光繞射儀 (X-ray Diffractometer、XRD) 38 3.5.2 熱重損失分析儀 (Thermogravimetry Analysis、TGA) 39 3.5.3 熱示差分析儀 (Differential Scanning Calorimetry、 DSC) 39 3.5.4 傅立葉紅外線光譜分析 (Fourier Transform Infrared Spectrometer、FT-IR) 40 3.5.5 超音波震盪器 (ultrasonic cleaner) 41 3.5.6 薄膜厚度控制儀 (Universal Applicator) 42 3.5.7 壓電係數測量儀 42 3.5.8 萬能拉力試驗機(Tensilon) 43 3.5.9 PicoSope 200-PC 示波器 機電響應 43 3.5.10 輸出功率密度分析 43 3.5.11 橋式整流器(Bridge Rectifier) 44 第四章 結果與討論 45 4.1 聚偏二氟乙烯-三氟乙烯(P(VDF-TrFE)) 45 4.1.1 聚偏二氟乙烯-三氟乙烯薄膜熱性質分析 45 4.1.2 聚偏二氟乙烯-三氟乙烯薄膜退火處理結晶度分析 48 4.1.3 聚偏二氟乙烯-三氟乙烯薄膜極化處理分析 52 4.1.4 聚偏二氟乙烯-三氟乙烯薄膜退火與極化處理比較 59 4.2 聚偏二氟乙烯-三氟乙烯(P(VDF-TrFE))/鋯鈦酸鉛 61 4.3 PZT表面改質 68 4.3.1 十四烷基膦酸Tetradecylphosphonic acid(TDPA)合成鑑定 68 4.3.2 PZT陶瓷顆粒的功能化鑑定 69 4.4 聚偏二氟乙烯-三氟乙烯(P(VDF-TrFE))/表面改質鋯鈦酸鉛 74 4.5 壓電複合薄膜比較 79 4.6 壓電複合薄膜的應用 81 4.6.1 壓電鞋應用 84 4.6.2 能量收集地板 85 4.6.3 壓力感測器應用 86 第五章 結論 87 第六章 參考文獻 88

[1] Abas, N., Kalair, A., and Khan, N. Review of fossil fuels and future energy technologies. Futures, vol. 69, pp. 31-49, 2015.
[2] Shaikh, F. K., and Zeadally, S. Energy harvesting in wireless sensor networks: A Comprehensive Review. Renewable and Sustainable Energy Reviews, vol. 55, pp. 1041-1054, 2016.
[3] Nunes-Pereira, J., Sencadas, V., Correia, V., Rocha, J. G., and Lanceros-Mendez, S. Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites. Sensors and Actuators A: Physical, vol. 196, pp. 55-62, 2013.
[4] Nunes-Pereira, J., Sencadas, V., Correia, V., Cardoso, V. F., Han, W., Rocha, J. G. and Lanceros-Méndez, S. Energy harvesting performance of BaTiO3/poly(vinylidene fluoride–trifluoroethylene) spin coated nanocomposites. Composites Part B: Engineering, vol.72, pp. 130-136, 2015.
[5] Ippili, S., Jella, V., Eom, J. H., Kim, J., Hong, S., Choi, J. S., and Yoon, S. G. An eco-friendly flexible piezoelectric energy harvester that delivers high output performance is based on lead-free MASnI3 films and MASnI3-PVDF composite films. Nano Energy, vol. 57, pp. 911-923, 2019.
[6] Sultana, A., Alam, M. M., Ghosh, S. K., Middya, T. R., and Mandal, D. Energy harvesting and self-powered microphone application on multifunctional inorganic-organic hybrid nanogenerator. Energy, vol. 166, pp. 963-971, 2019.
[7] Sun, Y., Chen, J., Li, X., Lu, Y., Zhang, S., and Cheng, Z. Flexible piezoelectric energy harvester/sensor with high voltage output over wide temperature range. Nano Energy, vol. 61, pp. 337-345, 2019.
[8] Won, S. S., Seo, H., Kawahara, M., Glinsek, S., Lee, J., Kim, Y., and Kim, S. H. Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films. Nano Energy, vol. 55, pp. 182-192, 2019.
[9] Liao, M., Ye, L., Zhang, Y., Chen, T., and Peng, H. The recent advance in fiber-shaped energy storage devices. Advanced Electronic Materials, vol. 5(1), p. 1800456, 2019.

[10] Gowdhaman, P., Antonyraj, K., and Annamalai, V. An effective approach on physical and dielectric properties of PZT-PVDF composites. International Journal of Advances in Scientific Research, vol. 1(8), pp. 322-328, 2015.
[11] Silleto, M. N., Yoon, S. J., and Arakawa, K. Piezoelectric cable macro-fiber composites for use in energy harvesting. International Journal of Energy Research, vol. 39(1), pp. 120-127, 2015.
[12] Wang, Z., Wang, X., Sun, Z., Li, Y., Li, J., and Shi, Y. Enhanced energy storage property of plate-like Na0.5Bi4.5Ti4O15/poly(vinylidene fluoride) composites through texture arrangement. Ceramics International, vol. 45(15), pp. 18356-18362,2019.
[13] Kim, G. H., Hong, S. M., and Seo, Y. Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-phase development. Physical chemistry chemical physics, vol. 11(44), pp. 10506-10512, 2009.
[14] Koga, K., and Ohigashi, H. Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers. Journal of applied physics, vol. 59(6), pp. 2142-2150, 1986.
[15] Cheng, Z. Y., Bharti, V., Xu, T. B., Xu, H., Mai, T., and Zhang, Q. M. Electrostrictive poly (vinylidene fluoride-trifluoroethylene) copolymers. Sensors and Actuators A: Physical, vol. 90(1-2), pp. 138-147, 2001.
[16] Canavese, G., Stassi, S., Cauda, V., Verna, A., Motto, P., Chiodoni, A., and Demarchi, D. Different scale confinements of PVDF-TrFE as functional material of piezoelectric devices. IEEE Sensors Journal, vol. 13(6), pp. 2237-2244, 2013.
[17] Bafqi, M. S. S., Bagherzadeh, R., and Latifi, M. Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. Journal of polymer research, vol. 22(7), pp. 1-9, 2015.
[18] Choi, M., Murillo, G., Hwang, S., Kim, J. W., Jung, J. H., Chen, C. Y., and Lee, M. Mechanical and electrical characterization of PVDF-ZnO hybrid structure for application to nanogenerator. Nano Energy, vol. 33, pp. 462-468, 2017.
[19] Abolhasani, M. M., Shirvanimoghaddam, K., and Naebe, M. PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Composites Science and Technology, vol. 138, pp. 49-56, 2017.
[20] Yuan, X., Li, W., Liu, H., Han, N., and Zhang, X. A novel PVDF/graphene composite membrane based on electrospun nanofibrous film for oil/water emulsion separation. Composites Communications, vol. 2, pp. 5-8, 2016.
[21] Zhang, W. B., Zhang, Z. X., Yang, J. H., Huang, T., Zhang, N., Zheng, X. T., and Zhou, Z. W. Largely enhanced thermal conductivity of poly(vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide. Carbon, vol. 90, pp. 242-254, 2015.
[22] Li, Y., Shi, Y., Cai, F., Xue, J., Chen, F., and Fu, Q. Graphene sheets segregated by barium titanate for polyvinylidene fluoride composites with high dielectric constant and ultralow loss tangent. Composites Part A: Applied Science and Manufacturing, vol. 78, pp. 318-326, 2015.
[23] Neppalli, R., Wanjale, S., Birajdar, M., and Causin, V. The effect of clay and of electrospinning on the polymorphism, structure and morphology of poly(vinylidene fluoride). European Polymer Journal, vol. 49(1), pp. 90-99, 2013.
[24] Hosseini, S. M., and Yousefi, A. A. Piezoelectric sensor based on electrospun PVDF-MWCNT-Cloisite 30B hybrid nanocomposites. Organic Electronics, vol. 50, pp. 121-129, 2017.
[25] Mason, W. P. Piezoelectricity, its history and applications. The journal of the Acoustical Society of America, vol. 70(6), pp. 1561-1566, 1981.
[26] Vatansever, D., Siores, E., and Shah, T. Alternative resources for renewable energy: piezoelectric and photovoltaic smart structures. Global Warming-Impacts and Future Perspective, vol. 263, 2012.
[27] Nawir, N. A. A., Basari, A. A., Saat, M. S. M., Yan, N. X., and Hashimoto, S. A review on piezoelectric energy harvester and its power conditioning circuit. ARPN Journals. 2018.
[28] Liu, W., and Ren, X. Large piezoelectric effect in Pb-free ceramics. Physical review letters, vol. 103(25), pp. 257602, 2009.
[29] Li, J. Y. Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials. International Journal of Engineering Science, vol. 38(18), pp. 1993-2011. 2000.
[30]Banik, N. C., Boyle, F. P., Sluckin, T. J., Taylor, P. L., Tripathy, S. K., and Hopfinger, A. J. Theory of structural phase transitions in poly (vinylidene fluoride). Physical Review Letters, vol. 43(6), pp. 456. 1979.

[31] Zhang, Q. M., Bharti, V., and Zhao, X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science, vol. 280(5372), pp. 2101-2104. 1998.
[32] Jung, S. W., Baeg, K. J., Yoon, S. M., You, I. K., Lee, J. K., Kim, Y. S., and Noh, Y. Y. Low-voltage-operated top-gate polymer thin-film transistors with high capacitance poly(vinylidene fluoride-trifluoroethylene)/poly (methyl methacrylate) dielectrics. Journal of Applied Physics, vol. 108(10), pp. 102810. 2010.
[33] Giannetti, E. Semi-crystalline fluorinated polymers. Polymer international, vol. 50(1), pp. 10-26. 2001.
[34] Hoque, N. A., Thakur, P., Roy, S., Kool, A., Bagchi, B., Biswas, P., and Ray, P. P. Er3+/Fe3+ stimulated electroactive, visible light emitting, and high dielectric flexible PVDF film based piezoelectric nanogenerators: a simple and superior self-powered energy harvester with remarkable power density. ACS applied materials & interfaces, vol. 9(27), pp. 23048-23059, 2017.
[35] Thakur, P., Kool, A., Bagchi, B., Hoque, N. A., Das, S., and Nandy, P. In situ synthesis of Ni (OH)2 nanobelt modified electroactive poly (vinylidene fluoride) thin films: remarkable improvement in dielectric properties. Physical Chemistry Chemical Physics, vol. 17(19), pp. 13082-13091, 2015.
[36] Martins, P., Lopes, A. C., and Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in polymer science, vol. 39(4), pp. 683-706, 2014.
[37] Hu, W. J., Juo, D. M., You, L., Wang, J., Chen, Y. C., Chu, Y. H., and Wu, T. Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films. Scientific reports, vol. 4(1), p. 4772, 2014.
[38] Lau, K., Liu, Y., Chen, H., and Withers, R. L. Effect of annealing temperature on the morphology and piezoresponse characterisation of poly(vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy. Advances in Condensed Matter Physics, 2013.
[39] Lin, Y., Cui, X., Yen, C., and Wai, C. M. Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. The Journal of Physical Chemistry B, vol. 109(30), pp. 14410-14415, 2005.
[40] Sencadas, V., Lanceros-Méndez, S., and Mano, J. F. Characterization of poled and non-poled β-PVDF films using thermal analysis techniques. Thermochimica acta, vol. 424(1-2), pp. 201-207, 2004.
[41] Zhu, G., Zeng, Z., Zhang, L., and Yan, X. Piezoelectricity in β-phase PVDF crystals: A molecular simulation study. Computational Materials Science, vol. 44(2), pp. 224-229, 2008.
[42] Salimi, A., and Yousefi, A. A. Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polymer Testing, vol. 22(6), pp. 699-704, 2003.
[43] Nguyen, C. A., Lee, P. S., Yee, W. A., Lu, X., Srinivasan, M., and Mhaisalkar, S. G. Enhanced functional and structural characteristics of poly(vinylidene-trifluoroethylene) copolymer thin films by corona poling. Journal of The Electrochemical Society, vol. 154(10), pp. G224, 2007.
[44] Matsushige, K., Nagata, K., Imada, S., and Takemura, T. The II-I crystal transformation of poly(vinylidene fluoride) under tensile and compressional stresses. Polymer, vol. 21(12), pp. 1391-1397, 1980.
[45] Gregorio, Jr, R., Cestari, M. Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics, vol. 32(5), pp. 859-870, 1994.
[46] Bachmann, M. A., Gordon, W. L., Koenig, J. L., and Lando, J. B. An infrared study of phase-III poly(vinylidene fluoride). Journal of Applied Physics, vol. 50(10), pp. 6106-6112, 1979.
[47] Ince-Gunduz, B. S., Alpern, R., Amare, D., Crawford, J., Dolan, B., Jones, S., and Cebe, P. Impact of nanosilicates on poly(vinylidene fluoride) crystal polymorphism: Part 1. Melt-crystallization at high supercooling. Polymer, vol. 51(6), pp. 1485-1493, 2010.
[48] Prest Jr, W. M., and Luca, D. J. The formation of the γ phase from the α and β polymorphs of polyvinylidene fluoride. Journal of Applied Physics, vol. 49(10), pp. 5042-5047, 1978.
[49] Imamura, R., Silva, A. B., and Gregorio Jr, R. γ→ β Phase transformation induced in poly (vinylidene fluoride) by stretching. Journal of applied polymer science, vol. 110(5), pp. 3242-3246, 2008.
[50] Esterly, D. M., and Love, B. J. Phase transformation to β-poly(vinylidene fluoride) by milling. Journal of Polymer Science Part B: Polymer Physics, vol. 42(1), pp. 91-97, 2004.

[51] Benz, M., and Euler, W. B. Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. Journal of applied polymer science, vol. 89(4), pp. 1093-1100, 2003.
[52] Gregorio Jr, R. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. Journal of Applied Polymer Science, vol. 100(4), pp. 3272-3279, 2006.
[53] Beier, C. W., Cuevas, M. A., and Brutchey, R. L. Effect of surface modification on the dielectric properties of BaTiO3 nanocrystals. Langmuir, vol. 26(7), pp. 5067-5071, 2010.
[54] Teyssedre, G., Bernes, A., and Lacabanne, C. DSC and TSC study of a VDF/TrFE copolymer. Thermochimica acta, vol. 226, pp. 65-75, 1993.
[55] Teyssedre, G., Grimau, M., Bernes, A., Martinez, J. J., and Lacabanne, C. α-Relaxation/retardation mode in semicrystalline polymers with flexible chains. Polymer, vol. 35(20), pp. 4397-4403, 1994.
[56] Park, Y. J., Kang, S. J., Park, C., Kim, K. J., Lee, H. S., Lee, M. S., and Park, I. J. Irreversible extinction of ferroelectric polarization in P (VDF-TrFE) thin films upon melting and recrystallization. Applied physics letters, vol. 88(24), p. 242908, 2006.
[57] Chamankar, N., Khajavi, R., Yousefi, A. A., saeid Rashidi, A., and Golestanifard, F. Comparing the piezo, pyro and dielectric properties of PZT particles synthesized by sol–gel and electrospinning methods. Journal of Materials Science: Materials in Electronics, vol. 30(9), pp. 8721-8735, 2019.
[58] Kim, P., Doss, N. M., Tillotson, J. P., Hotchkiss, P. J., Pan, M. J., Marder, S. R., and Perry, J. W. High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS nano, vol. 3(9), pp. 2581-2592, 2009.
[59] Paniagua, S. A., Hotchkiss, P. J., Jones, S. C., Marder, S. R., Mudalige, A., Marrikar, F. S., and Armstrong, N. R. Phosphonic acid modification of indium− tin oxide electrodes: combined XPS/UPS/contact angle studies. The Journal of Physical Chemistry C, vol. 112(21), pp. 7809-7817, 2008.
[60] Arita, T., Moriya, K. I., Yoshimura, T., Minami, K., Naka, T., and Adschiri, T. Dispersion of phosphonic acids surface-modified titania nanocrystals in various organic solvents. Industrial & Engineering Chemistry Research, vol. 49(20), pp. 9815-9821, 2010.

無法下載圖示 全文公開日期 2024/09/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE