簡易檢索 / 詳目顯示

研究生: 羅于翔
Yu-Hsiang Lo
論文名稱: 添加助劑於二氧化鈦光觸媒降解聚乙烯之製程研究
Study of The Additives for Photocatalytic Polyethylene Degradation by Titanium Dioxide
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 賴君義
Juin-Yih Lai
陳文章
Wen-Chang Chen
胡哲嘉
Che-Chia Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 101
中文關鍵詞: 聚乙烯二氧化鈦奈米粒子奈米複合薄膜固相光催化降解
外文關鍵詞: Polyethylene, TiO2 nanoparticles, Nanocomposite film, Solid-phase photocatalytic degradation
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Abstract I 摘要 IV 表目錄 VIII 圖目錄 IX Chapter 1緒論 1 1.1前言 1 1.2研究背景與動機 2 Chapter 2文獻回顧 8 2.1光觸媒添加降解 8 2.2澱粉添加降解 12 2.3酵素添加降解 13 2.4降解聚乙烯方式選定 16 2.4.1不同添加劑對聚乙烯機械性質影響 16 2.4.2二氧化鈦光觸媒催化反應 17 2.4.3聚乙烯光降解反應 18 2.4.4加速聚乙烯降解之可行性評估 20 Chapter 3實驗部分 21 3.1實驗藥品 21 3.2儀器 23 3.3 實驗步驟 24 3.3.1聚乙烯光觸媒添加薄膜開發流程圖 24 3.3.2.1 實驗步驟Aldrich PE光觸媒添加(滴落塗佈) 25 3.3.2.2 實驗步驟Aldrich PE光觸媒與固態鹼添加(熱壓成膜) 26 3.3.2.3 實驗步驟台塑PE光觸媒與固態鹼添加(熱壓成膜) 27 3.4分析實驗方法 28 3.4.1結構鑑定實驗 28 3.4.2材料本質分析 28 3.4.3薄膜表面結構分析 29 3.4.4薄膜重量損失分析 29 Chapter 4 結果與討論 30 4.1.聚乙烯光觸媒添加 30 4.1.1薄膜外觀(聚乙烯光觸媒添加) 30 4.1.2表面型態(聚乙烯光觸媒添加) 38 4.1.3結構分析(聚乙烯光觸媒添加) 43 4.1.4材料本質分析(聚乙烯光觸媒添加) 48 4.1.5重量分析(聚乙烯光觸媒添加) 50 4.2.聚乙烯光觸媒與固態鹼添加 57 4.2.1薄膜外觀(聚乙烯光觸媒與固態鹼添加) 59 4.2.2表面型態(聚乙烯光觸媒與固態鹼添加) 63 4.2.3結構分析(聚乙烯光觸媒與固態鹼添加) 67 4.2.4重量分析(聚乙烯光觸媒與固態鹼添加) 71 結論 75 參考文獻 76

1. Plastics Europe Plastics - the Facts 2020 An analysis of European plastics production, demand and waste data.
https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020
2. Canopoli, L.; Fidalgo, B.; Coulon, F.; Wagland, S. T., Physico-chemical properties of excavated plastic from landfill mining and current recycling routes. Waste Management 2018, 76, 55-67.
3. Naser, A. Z.; Deiab, I.; Darras, B. M., Poly (lactic acid)(PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv. 2021, 11 (28), 17151-17196.
4. Fang, Q.; Hanna, M. A., Rheological properties of amorphous and semicrystalline polylactic acid polymers. Ind Crops Prod. 1999, 10 (1), 47-53.
5. Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S. E.; Singh, S. P., Compostability of bioplastic packaging materials: an overview. Macromol. Biosci. 2007, 7 (3), 255-277.
6. Jem, K. J.; Tan, B., The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv. Ind. Eng. Polym. Res. 2020, 3 (2), 60-70.
7. Wang, C.; Liu, Y.; Chen, W. Q.; Zhu, B.; Qu, S.; Xu, M., Critical review of global plastics stock and flow data. J. Ind. Ecol. 2021, 1-18.
8. Roy, P. K.; Hakkarainen, M.; Varma, I. K.; Albertsson, A.-C., Degradable polyethylene: fantasy or reality. Environ. Sci. Technol. 2011, 45 (10), 4217-4227.
9. Sitek, F.; Guillet, J. E.; Heskins, M. Some Aspects of Photolysis and Photooxidation of Polyethylene Containing Ketone Groups. J. Polym. Sci. Polym. Symp. 1976, 57, 343– 355.
10. Guillet, J. E. Photodegradable composition. US Patent 3753952, 1973.
11. Ammala, A.; Bateman, S.; Dean, K.; Petinakis, E.; Sangwan, P.; Wong, S.; Yuan, Q.; Yu, L.; Patrick, C.; Leong, K., An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 2011, 36 (8), 1015-1049.
12. Jakubowicz, I.; Yarahmadi, N.; Petersen, H., Evaluation of the rate of abiotic degradation of biodegradable polyethylene in various environments. Polym. Degrad. Stab. 2006, 91 (7), 1556-1562.
13. Singh, B.; Sharma, N., Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 2008, 93 (3), 561-584.
14. Liu, X.; Gao, C.; Sangwan, P.; Yu, L.; Tong, Z., Accelerating the degradation of polyolefins through additives and blending. J Appl Polym Sci. 2014, 131 (18), 407-450.
15. Albertsson, A.-C.; Karlsson, S., The influence of biotic and abiotic environments on the degradation of polyethylene. Prog. Polym. Sci. 1990, 15 (2), 177-192.
16. Huang, J. C.; Shetty, A. S.; Wang, M. S., Biodegradable plastics: a review. Adv. Polym. Technol. 1990, 10 (1), 23-30.
17. Luo, Y.; Lin, Z.; Guo, G., Biodegradation assessment of poly (lactic acid) filled with functionalized titania nanoparticles (PLA/TiO2) under compost conditions. Nanoscale Res. Lett. 2019, 14 (1), 1-10.
18. Olajire, A.; Mohammed, A., Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films. Adv. Powder Technol. 2020, 31 (1), 211-218.
19. Goel, V.; Luthra, P.; Kapur, G. S.; Ramakumar, S., Biodegradable/bio-plastics: myths and realities. J. Polym. Environ. 2021, 1-26.
20. Goheen, S.; Wool, R., Degradation of polyethylene–starch blends in soil. J. Appl. Polym. Sci. 1991, 42 (10), 2691-2701.
21. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. nature 1972, 238 (5358), 37-38.
22. Koysuren, H. N., Solid-phase photocatalytic degradation of polyvinyl borate. Catalysts 2018, 8 (11), 499.
23. James, S.; Robinson, A.; Arnold, J.; Worsley, D., The effects of humidity on photodegradation of poly (vinyl chloride) and polyethylene as measured by the CO2 evolution rate. Polym. Degrad. Stab. 2013, 98 (2), 508-513.
24. Jin, C.; Christensen, P.; Egerton, T.; Lawson, E.; White, J., Rapid measurement of polymer photo-degradation by FTIR spectrometry of evolved carbon dioxide. Polym. Degrad. Stab. 2006, 91 (5), 1086-1096.
25. U Zhao, X.; Li, Z.; Chen, Y.; Shi, L.; Zhu, Y., Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. J. Mol. Catal. A: Chem. 2007, 268 (1-2), 101-106.
26. Tofa, T. S.; Kunjali, K. L.; Paul, S.; Dutta, J., Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environ. Chem. Lett. 2019, 17 (3), 1341-1346.
27. Bandara, W. L. N.; de Silva, R. M.; de Silva, K. N.; Dahanayake, D.; Gunasekara, S.; Thanabalasingam, K., Is nano ZrO2 a better photocatalyst than nano TiO2 for degradation of plastics? RSC adv. 2017, 7 (73), 46155-46163.
28. Olajire, A.; Mohammed, A., Green synthesis of palladium nanoparticles using Ananas comosus leaf extract for solid-phase photocatalytic degradation of low density polyethylene film. J. Environ. Chem. Eng. 2019, 7 (4), 103270.
29. Ouyang, Z.; Yang, Y.; Zhang, C.; Zhu, S.; Qin, L.; Wang, W.; He, D.; Zhou, Y.; Luo, H.; Qin, F., Recent advances in photocatalytic degradation of plastics and plastic-derived chemicals. J. Mater. Chem. A Mater. 2021, 9 (23), 13402-13441.
30. Taha, H. G.; Mohamed, H. F., Study of the nanostructure of γ‐irradiated high‐density polyethylene/carbon black composite and its durability as geomembrane. Polym. Adv. Technol. 2020, 31 (7), 1581-1590.
31. Feldman, D., Polymer weathering: photo-oxidation. J. Polym. Environ. 2002, 10 (4), 163-173.
32. Atiqullah, M.; Winston, M.; Bercaw, J.; Hussain, I.; Fazal, A.; Al-Harthi, M.; Emwas, A.-H.; Khan, M.; Hossaen, A., Effects of a vanadium post-metallocene catalyst-induced polymer backbone inhomogeneity on UV oxidative degradation of the resulting polyethylene film. Polym. Degrad. Stab. 2012, 97 (7), 1164-1177.
33. Hartley, G. H.; Guillet, J., Photochemistry of ketone polymers. I. Studies of ethylene-carbon monoxide copolymers. Macromolecules 1968, 1 (2), 165-170.
34. Roy, P.; Surekha, P.; Rajagopal, C.; Chatterjee, S.; Choudhary, V., Studies on the photo-oxidative degradation of LDPE films in the presence of oxidised polyethylene. Polym. Degrad. Stab. 2007, 92 (6), 1151-1160.
35. Miyauchi, M.; Li, Y.; Shimizu, H., Enhanced degradation in nanocomposites of TiO2 and biodegradable polymer. Environ. Sci. Technol. 2008, 42 (12), 4551-4554.
36. García-Montelongo, X.; Martínez-De La Cruz, A.; Vázquez-Rodríguez, S.; Torres-Martínez, L. M., Photo-oxidative degradation of TiO2/polypropylene films. M. Mater. Res. Bull. 2014, 51, 56-62.
37. Cho, S.; Choi, W., Solid-phase photocatalytic degradation of PVC–TiO2 polymer composites. J. Photochem. Photobiol. A. 2001, 143 (2-3), 221-228.
38. Shang, J.; Chai, M.; Zhu, Y., Solid-phase photocatalytic degradation of polystyrene plastic with TiO2 as photocatalyst. J. Solid State Chem. 2003, 174 (1), 104-110.
39. Zan, L.; Wang, S.; Fa, W.; Hu, Y.; Tian, L.; Deng, K., Solid-phase photocatalytic degradation of polystyrene with modified nano-TiO2 catalyst. Polymer 2006, 47 (24), 8155-8162.
40. Thomas, R. T.; Nair, V.; Sandhyarani, N., TiO2 nanoparticle assisted solid phase photocatalytic degradation of polythene film: A mechanistic investigation. Colloids Surf. A. 2013, 422, 1-9.
41. X.u Zhao.; Li, Z.; Chen, Y.; Shi, L.; Zhu, Y., Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. J. Mol. Catal. A: Chem. 2007, 268 (1-2), 101-106.
42. Vieyra, H.; Aguilar‐Méndez, M. A.; San Martín‐Martínez, E., Study of biodegradation evolution during composting of polyethylene–starch blends using scanning electron microscopy. J. Appl. Polym. Sci. 2013, 127 (2), 845-853.
43. Pang, M. M.; Pun, M. Y.; Ishak, Z. A. M., Natural weathering studies of biobased thermoplastic starch from agricultural waste/polypropylene blends. J. Appl. Polym. Sci. 2013, 129 (6), 3237-3246.
44. Ramis, X.; Cadenato, A.; Salla, J.; Morancho, J.; Valles, A.; Contat, L.; Ribes, A., Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability. Polym. Degrad. Stab. 2004, 86 (3), 483-491.
45. Kim, M., Evaluation of degradability of hydroxypropylated potato starch/polyethylene blend films. Carbohydrate Polymers 2003, 54 (2), 173-181.
46. Griffin, G., Starch polymer blends. Polym. Degrad. Stab. 1994, 45 (2), 241-247.
47. Griffin, G. J. L. Degradation of Polyethylene in Compost Burial. J. Polym. Sci. Polym. Symp. 1976, 57, 281–286.
48. Albertsson, A.-C.; Barenstedt, C.; Karlsson, S., Susceptibility of enhanced environmentally degradable polyethylene to thermal and photo-oxidation. Polym. Degrad. Stab. 1992, 37 (2), 163-171.
49. Jakubowicz, I., Evaluation of degradability of biodegradable polyethylene (PE). Polym. Degrad. Stab. 2003, 80 (1), 39-43.
50. Ferguson, G. M.; Hood, M.; Abbott, K., Photodegradable high density polyethylene‐based shopping bags—environmental hazard or blessing? Polymer international 1992, 28 (1), 35-40.
51. David, C.; Trojan, M.; Daro, A.; Demarteau, W., Photodegradation of polyethylene: comparison of various photoinitiators in natural weathering conditions. Polym. Degrad. Stab. 1992, 37 (3), 233-245.
52. Magagula, B.; Nhlapo, N.; Focke, W. W., Mn2Al-LDH-and Co2Al-LDH-stearate as photodegradants for LDPE film. Polym. Degrad. Stab. 2009, 94 (6), 947-954.
53. Roy, P.; Surekha, P.; Rajagopal, C.; Chatterjee, S.; Choudhary, V., Accelerated aging of LDPE films containing cobalt complexes as prooxidants. Polym. Degrad. Stab. 2006, 91 (8), 1791-1799.
54. Roy, P.; Surekha, P.; Rajagopal, C.; Choudhary, V., Comparative effects of cobalt carboxylates on the thermo‐oxidative degradation of LDPE films. J Appl Polym Sci. 2007, 103 (6), 3758-3765.
55. Roy, P.; Surekha, P.; Raman, R.; Rajagopal, C., Investigating the role of metal oxidation state on the degradation behaviour of LDPE. Polym. Degrad. Stab. 2009, 94 (7), 1033-1039.
56. Gugumus, F., Re-examination of the role of hydroperoxides in polyethylene and polypropylene: chemical and physical aspects of hydroperoxides in polyethylene. Polym. Degrad. Stab. 1995, 49 (1), 29-50.
57. Smith, R.; Oliver, C.; Williams, D., The enzymatic degradation of polymers in vitro. J. Biomed. Mater. Res. 1987, 21 (8), 991-1003.
58. 馬明渡, 一種控制共擠複合薄膜中各層同步降解的方法, CN102627013B, 2014.
59. ENATM aerobic biodegradability test results ASTM D5338 & ISO 14855
http://www.enabiotec.com/sub0204.php
60. Enzymoplast酵素推薦使用劑量http://www.enzymoplast.com/GenFit%20Brochure%20(Chinese%20Traditional).pdf
61. Application of ENATM (main applications)
http://www.enabiotec.com/sub0301.php
62. Karimi, M.; Biria, D., The promiscuous activity of alpha-amylase in biodegradation of low-density polyethylene in a polymer-starch blend. Sci. Rep. 2019, 9 (1), 1-10.
63. Oromiehie, A. R., T. Taherzadeh Lari, and A. Rabiee., Physical and thermal mechanical properties of corn starch/LDPE composites. J Appl Polym Sci. 2013, 127 (2), 1128-1134.
64. Nguyen, V. G., Thai, H., Mai, D. H., Tran, H. T., Vu, M. T., Effect of titanium dioxide on the properties of polyethylene/TiO2 nanocomposites. Composites Part B, 2013, 45(1), 1192-1198.
65. Linsebigler, A. L.; Lu, G.; Yates Jr, J. T., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95 (3), 735-758.
66. Liang, W.; Luo, Y.; Song, S.; Dong, X.; Yu, X., High photocatalytic degradation activity of polyethylene containing polyacrylamide grafted TiO2. Polym. Degrad. Stab. 2013, 98 (9), 1754-1761.
67. Zapata, P. A.; Rabagliati, F. M.; Lieberwirth, I.; Catalina, F.; Corrales, T., Study of the photodegradation of nanocomposites containing TiO2 nanoparticles dispersed in polyethylene and in poly (ethylene-co-octadecene). Polym. Degrad. Stab. 2014, 109, 106-114.
68. Chen, S.; Liu, Y., Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere 2007, 67 (5), 1010-1017.
69. Diantoro, M., Kusumaatmaja, A., & Triyana, K., Study on photocatalytic properties of TiO2 nanoparticle in various pH condition. J. Phys.: Conf. Ser. 2018,1011.
70. Thomas, R. T.; Sandhyarani, N., Enhancement in the photocatalytic degradation of low density polyethylene–TiO2 nanocomposite films under solar irradiation. RSC Adv. 2013, 3 (33), 14080-14087.
71. Liu, G.; Zhu, D.; Liao, S.; Ren, L.; Cui, J.; Zhou, W., Solid-phase photocatalytic degradation of polyethylene–goethite composite film under UV-light irradiation. J. Hazard. Mater. 2009, 172 (2-3), 1424-1429.
72. Ola, O.; Maroto-Valer, M. M., Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol., C 2015, 24, 16-42.
73. Zhang, D.; Dong, S., Challenges in band alignment between semiconducting materials: A case of rutile and anatase TiO2. Prog. Nat. Sci. 2019, 29 (3), 277-284.
74. Falco, C. Y.; Florea, A.-F.; Shang, L.; Simonsen, O.; Andersen, M. L.; Risbo, J., Reactivity of anatase and rutile titanium dioxide powder with hydrogen peroxide vapour: Implication for reactive coating systems for laundry enzymes. Powder Technol. 2021, 391, 353–361.
75. Amano, F.; Nakata, M.; Yamamoto, A.; Tanaka, T., Rutile titanium dioxide prepared by hydrogen reduction of Degussa P25 for highly efficient photocatalytic hydrogen evolution. Catal. Sci. Technol. 2016, 6 (14), 5693-5699.
76. Ohno, T.; Tokieda, K.; Higashida, S.; Matsumura, M., Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl.Catal. A: Gen. 2003, 244 (2), 383-391.
77. Amano, F.; Nakata, M.; Yamamoto, A.; Tanaka, T., Effect of Ti3+ ions and conduction band electrons on photocatalytic and photoelectrochemical activity of rutile titania for water oxidation. J. Phys. Chem. C 2016, 120 (12), 6467-6474.
78. Ojeda, T.; Freitas, A.; Birck, K.; Dalmolin, E.; Jacques, R.; Bento, F.; Camargo, F., Degradability of linear polyolefins under natural weathering. Polym. Degrad. Stab. 2011, 96 (4), 703-707.
79. Grause, G.; Chien, M.-F.; Inoue, C., Changes during the weathering of polyolefins. Polym. Degrad. Stab. 2020, 109364.
80. Gong, W.; Zhou, Z.; Liu, Y.; Wang, Q.; Guo, L., Catalytic gasification of sewage sludge in supercritical water: influence of K2CO3 and H2O2 on hydrogen production and phosphorus yield. ACS omega 2020, 5 (7), 3389-3396.
81. Sınaǧ, A.; Kruse, A.; Schwarzkopf, V., Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. Ind. Eng. Chem. Res. 2003, 42 (15), 3516-3521.

無法下載圖示 全文公開日期 2026/09/27 (校內網路)
全文公開日期 2026/09/27 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE