簡易檢索 / 詳目顯示

研究生: 吳介豪
Chien-hao Wu
論文名稱: 含鋼筋石灰石砂漿之抗蝕與氯離子擴散研究
Chloride Diffusion and Corrosion in Reinforced Limestone Mortar
指導教授: 陳君弢
Chun-tao Chen
口試委員: 陳君弢
Chun-tao Chen
張大鵬
Ta-peng Chang
鄭安
An Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 175
中文關鍵詞: 氯離子擴散鋼筋腐蝕
外文關鍵詞: chloride, diffusion, reinforcement, corrosion
相關次數: 點閱:292下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討添加不同比例石灰石之水泥砂漿在不同拌合條件及養護環境下試體內部的氯離子擴散及鋼筋腐蝕之關係。試驗以固定水灰比(w/c=0.6)之石灰石水泥試體分別製作方塊、圓柱及鋼筋圓柱試體,並使用鹽水或淡水來拌合及養護以評估氯離子在各條件下之擴散及鋼筋腐蝕行為。研究結果顯示,氯離子擴散會受到環境條件與試體本身水化程度所影響,並因深度不同而有所差異,故不宜以單一擴散係數來描述氯離子擴散行為。於鹽水養護的條件下,氯離子的擴散及鋼筋腐蝕速率隨著石灰石添加量的增加而增加。然而在適當的養護下,添加10%石灰石的砂漿試體中,氯離子之擴散及鋼筋腐蝕速率與控制組並無明顯差異。


This study explores the chloride diffusion and the reinforcement corrosion in limestone mortar prepared with various mixing and curing conditions. Specimens of cubic, cylindrical and reinforced mortar were prepared and cured with either fresh and salt water. Results showed that the chloride diffusion was influenced by the curing conditions and the hydration, suggesting that the chloride diffusion could not be adequately described by single diffusion constant. Results also showed that the chloride diffusion and corrosion rates of the reinforcements were increased by the limestone addition. However, with 10% limestone addition, such increases were mitigated when the specimens were properly cured.

摘要 Abstract 誌謝 總目錄 圖目錄 表目錄 第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究方法 1.4 研究流程 第二章 文獻回顧 2.1 石灰石之簡介 2.2 添加石灰石對混凝土中氯離子及鋼筋腐蝕之影響 2.3 腐蝕機理 2.3.1 腐蝕的基本原理 2.3.2 腐蝕的形態 2.3.3 電化學腐蝕原理 2.3.4 混凝土中鋼筋腐蝕原理 2.4 氯離子對鋼筋腐蝕之影響 2.4.1 鋼筋混凝土結構物腐蝕劣化過程 2.5 氯離子的基本性質 2.5.1 混凝土中的氯離子來源 2.5.2 氯離子型態 2.5.3 孔隙結構與滲透性 2.5.4 氯離子傳輸機理 2.5.5 氯離子自然擴散機理 2.6 氯離子量測法 2.6.1 快速氯離子滲透法 2.6.2 電位差滴定法 2.7 鋼筋腐蝕量測法 2.7.1 開路電位法(open circuit potential method,OCP) 2.7.2 直流極化法(linear polarization method,DC) 2.7.3 鋼筋重量損失計算 第三章 試驗規劃 3.1 試驗變數 3.2 試驗配比 3.3 試驗材料 3.4 試驗設備 3.4.1 氯離子滲透儀器 3.4.2 氯離子量測儀器 3.4.3 腐蝕量測儀器 3.4.4 微觀結構分析儀器 3.4.5 其他試驗儀器 3.5 試體製作 3.6 試驗方法 第四章 試驗結果 4.1 前言 4.2 先期試驗 4.2.1 快速氯離子滲透試驗 4.2.2 鋼筋腐蝕量與加速腐蝕之相關 4.3 淡水拌合、鹽水養護之環境 4.3.1 氯離子濃度量測 4.3.2 鋼筋腐蝕量測 4.4 鹽水拌合、石灰水養護之環境 4.4.1 氯離子濃度量測 4.4.2 鋼筋腐蝕量測 4.5 淡水拌合、石灰水養護、鹽水浸泡之環境 4.5.1 氯離子濃度量測 4.5.2 鋼筋腐蝕量測 4.6 氯離子濃度與鋼筋腐蝕之相關 4.7 微觀結構分析 4.7.1 XRD微觀分析 4.7.2 SEM微觀分析 第五章 結果與討論 5.1 結論 5.2 建議 參考文獻 附錄A XRD圖譜 附錄B SEM圖

[1] Bonavetti, V., Donza, H., Rahhal, V. and Irassar, E., "Influence of initial curing on the properties of concrete containing limestone blended cement", Cement and Concrete Research, Vol. 30, No. 5, pp. 703-708, 2000.
[2] Bonavetti, V., Donza, H., Menendez, G., Cabrera, O. and Irassar, E.F., "Limestone filler cement in low w/c concrete: A rational use of energy", Cement and Concrete Research, Vol. 33, No. 6, pp. 865-871, 2003.
[3] ASTM C 51-11, "Standard Terminology Relating to Lime and Limestone (as used by the Industry)",ASTM International, West Conshohocken, PA, 2011.
[4] 黃兆龍, "混凝土性質與行為", 第3版, 詹氏書局, 台北市, pp. 33, 2001。
[5] ASTM C150/C150M-11, "Standard Specification for Portland Cement",ASTM International, West Conshohocken, PA, 2011.
[6] Tsivilis, S., Chaniotakis, E., Badogiannis, E., Pahoulas, G. and Ilias, A., "A study on the parameters affecting the properties of Portland limestone cements", Cement & Concrete Composites, Vol. 21, No. 2, pp. 107-116, 1999.
[7] Voglis, N., Kakali, G., Chaniotakis, E. and Tsivilis, S., "Portland-limestone cements. Their properties and hydration compared to those of other composite cements", Cement & Concrete Composites, Vol. 27, No. 2, pp. 191-196, 2005.
[8] EN 197-1-2000, "Cement - Part 1: Composition, specifications and conformity criteria for common cements",2000.
[9] Tsivilisa, S., Batis, G. and Chaniotakisb, E., "Properties and behavior of limestone cement concrete and mortar", Cement & Concrete Composites, Vol. 30, pp. 1679-1683, 2000.
[10] CNS 61 R2001, "卜特蘭水泥",中華民國國家標準, 經濟標準檢驗局, 2005.
[11] Hornainl, H. and Marchandx, J., "Diffusion of chloride ions in limestone filler blended cement pastes and mortars", Cement and Concrete Research, Vol. 25, No. 8, pp. 1667-1678, 1995.
[12] Dhir, R.K., Limbachiya, M.C., McCarthy, M.J. and Chaipanich, A., "Evaluation of Portland limestone cements for use in concrete construction", Materials and Structures, Vol. 40, No. 5, pp. 459-473, 2007.
[13] Tsivilisa, S., Chaniotakisb, E., Batis, G. and Kakali, G., "An analysis of the properties of Portland limestone cements and concrete", Cement & Concrete Composites, Vol. 24, pp. 371-378, 2002.
[14] 林賢正, "鋼筋混凝土腐蝕行為探討", 碩士論文, 私立中華大學, pp. 9-10, 2003.
[15] Fontana, M.G. and Greene, N.D., "Corrosion engineering". McGraw-Hill, N.Y., pp. 39, 1986.
[16] 蔡立倫, "含腐蝕鋼筋之鋼筋混凝土梁耐震行為", 碩士論文, 國立臺灣科技大學, pp. 4-6, 2010.
[17] Uhlig, H.H. and Revie, R.W., "Corrosion and Corrosion Control". Wiley Interscience, N.Y., pp. 90-91, 1986.
[18] Liauw∗, T.C., "Influence of seawater on reinforced concrete buildings", Building Science, Vol. 9, pp. 125-129, 1974.
[19] Hansson, M.C., "Comment on Eiectrochemical Measurements of The Rate of Corrosion of Steel in Concrete", Cement and Concrete Research, Vol. 8, No. 4, pp. 574-584, 1984.
[20] Schweitzer, P.A., "Fundamentals of corrosion : mechanisms, causes, and preventative methods ". FL : CRC Press, Boca Raton, pp. 12, 2010.
[21] Mehta, P.K. and Monteiro, P.J.M., "Concrete: Structure, Properties, and Materials". Prentice Hall, New Jersey, pp. 153, 1993.
[22] ACI Committee, "State of the Art Report on Bond Under Cyclic Loads",ACI International, Detroit, Michigan, 1992.
[23] Morris, W., Moreno, E.I. and Sagues, A.A., "Practical evaluation of resistivity of concrete in test cylinders using a Wenner array probe", Cement and Concrete Research, Vol. 26, No. 12, pp. 1779-1787, 1996.
[24] 黃兆龍, "混凝土中氯離子含量檢測技術及試驗", 詹氏書局, 台北市, pp. 19, 2002。
[25] 陳冠霖, "添加矽灰與飛灰對鋼筋混凝土腐蝕行為影響之研究", 碩士論文, 國立臺灣海洋大學, pp. 10-11, 2007.
[26] CNS 1240 A2029, "混凝土粒料",中華民國國家標準, 經濟標準檢驗局, 1998.
[27] Buenfeld, N.R. and Newman, J.B., "Factors influencing chloride-binding in concrete", Cement and Concrete Research, Vol. 20, No. 2, pp. 291-300, 1990.
[28] Song, H.W., Lee, C.H. and Ann, K.Y., "Factors influencing chloride transport in concrete structures exposed to marine environments", Cement & Concrete Composites, Vol. 30, No. 2, pp. 113-121, 2008.
[29] Brandt, A.M., "Cement-based Composites:Mechanical Properties and Performance". E& FN SPON, New York, pp. 116-119, 1995.
[30] Puyate, Y.T. and Lawrence, C.J., "Steady state solutions for chloride distribution due to wick action in concrete", Chemical Engineering Science, Vol. 55, No. 16, pp. 3329-3334, 2000.
[31] Johannesson, B.F., "Diffusion of a mixture of cations and anions dissolved in water", Cement and Concrete Research, Vol. 29, No. 8, pp. 1261-1270, 1999.
[32] Crank, J., "The mathematics of diffusion". Clarendon Press, Oxford, pp. 1-10, 1964.
[33] 林致緯, "以鹽水浸漬試驗與快速氯離子滲透試驗探討混凝土中氯離子擴散行為", 碩士論文, 國立海洋大學, pp. 9-13, 2006.
[34] ASTM C1202-11, "Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration",ASTM International, West Conshohocken, PA, 2010.
[35] CNS 14795 A3395, "混凝土抗氯離子穿透能力試驗法—通過電荷量表示法",中華民國國家標準, 經濟標準檢驗局, 2004.
[36] Feldman, R., Prudencio, L.R. and Chan, G., "Rapid chloride permeability test an blended cement and other concretes: correlations between charge, initial current and conductivity", Construction and Building Materials, Vol. 13, No. 3, pp. 149-154, 1999.
[37] AASHTO T260-97, "Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials",Washington, D.C., 2011.
[38] Andrade, C. and Alonso, C., "Corrosion rate monitoring in the laboratory and on-site", Construction and Building Materials, Vol. 10, No. 5, pp. 315-328, 1996.
[39] ASTM C876-09, "Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete",ASTM International, West Conshohocken, PA, 2009.
[40] 王鼎智, "氯離子在不同混凝土裂縫型式下之傳輸與對鋼筋腐蝕影響之研究", 碩士論文, 國立成功大學, pp. 8-9, 2002.
[41] Stern, M., "A Method for Determining Corrosion Rate from Linear Polarization Data", British Corrosion Journal, pp. 122-133, 1958.
[42] McCarter, W.J. and Brousseau, R., "The A.C. Response of Hardened Cement Paste", Cement and Concrete Research, Vol. 20, No. 6, pp. 891-900, 1990.
[43] ASTM G 59-09, "Standard Test Method for Conducting Potentiaodynamic Polarization Resistance Measurement",ASTM International, West Conshohocken, PA, 2011.
[44] ASTM C94-09, "Standard Specification for Ready-Mixed Concrete",ASTM International, West Conshohocken, PA, 2009.
[45] ASTM C 127-07, "Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate",ASTM International, West Conshohocken, PA, 2007.
[46] ASTM C 29-09, "Standard Test Method for Bulk Density (Unit Weight) and Voids in Aggregate",ASTM International, West Conshohocken, PA, 2009.
[47] ASTM C 143-08, "Standard Test Method for Slump of Hydraulic-Cement Concrete",ASTM International, West Conshohocken, PA, 2008.
[48] ASTM C 192-07, "Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory",ASTM International, West Conshohocken, PA, 2007.
[49] 葉桎銘, "不同拌合條件及養護環境下砂漿試體內部氯離子擴散與鋼筋腐蝕之關係", 碩士論文, 國立臺灣科技大學, pp. 71-85, 2011.

無法下載圖示 全文公開日期 2017/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE