簡易檢索 / 詳目顯示

研究生: 朱翔
Hsiang - Chu
論文名稱: 探討與製程不敏感之多極Mach-Zehnder干涉器
Multi-stage Mach-Zehnder Interferometry Study on Process Insensitivity
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 林敬舜
ChingShun Lin
李志堅
Chih-Chien Lee
林保宏
Pao-hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 84
中文關鍵詞: 製程不敏感之多極Mach-Zehnder干涉器
外文關鍵詞: Mach-Zehnder Interferometry Study on Process Ins
相關次數: 點閱:155下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Mach-Zehnder 干涉器可應用在通訊以及生物醫學上,在通訊方面可以運用在波長濾波器進行分工多波器之設計,然而分工多波器對製程相當敏感,因此利用Z轉換可達到對製程上之不敏感,若此分工多波器三級之結構,考慮第二級之延遲項放置上端或是下端,並且加入相位移可以發現三級且延遲項放置下端效果較好,因此利用此方法進行分工多波器之設計。在醫學生物應用上可以利用Mach-Zehnder 干涉進行表面電漿生物感測器,其工作原理在波導上面與側面上覆蓋一層金屬,當光傳遞到金屬時,將會在矽波導與金屬交接面產生一表面電漿波以及金屬與介質待測物交接面產生另一表面電漿波,當此兩表面電漿波至金屬層尾端時,再回傳至矽波導層,此種機制等同於Mach-Zehnder干涉器。
    在進行表面電漿生物感測器的製程可以分成三個部分,第一部分是黃光,第二部分是蝕刻,第三部分是化學氣相沉積以及金屬的物理沉積的部分。而表面電漿生物感測器會有三道光罩,依序為定義波導層、金屬感測區開窗、非金屬感測區開窗。第一道光罩會用到的製程有三個分別是黃光、蝕刻以及化學氣相沉積,而此步驟最為重要是因為如果波導尺寸不對,就無法將TM模侷限在波導裡傳輸,因此進行此步驟需要嚴格的黃光線寬要求以及精準的蝕刻深度方可達到波導尺寸。第二道是金屬感測區開窗,我們須先在完成第一道的波導層之後進行化學氣相沉積二氧化矽,才可進行第二道的金屬感測區之動作,此光罩需要用到的製程有三個分別為黃光、蝕刻以及金屬的物理氣相沉積,在此步驟黃光的線寬就可以不需要像第一道這麼嚴格要求,但是在蝕刻以及金屬沉積之部分需要嚴格控管深度以及波導三面金屬之厚度,以避免光損耗提升以及達到生物感測器之干涉效應。最後為第三道光罩之非感測區的開窗動作,而此動作會有兩個製程分別是黃光以及蝕刻,在此的兩個製程均不需要太嚴格的線寬要求以及蝕刻要求。


    Mach-Zehnder interferometry (MZI) can be applied onto communication and biomedical science. In communication, the MZI based wavelength division multiplexing (WDM) wavelength filter is sensitive to the processing variation and can be improved by the Z-transform. Among the three stages of the WDM filter, the delay length on the second stage, put on the opposite side compared with the previous stage besides the phase adding, demonstrates the stable and outstanding optical performance.
    In biomedical science, MZI was utilized to illustrate the surface plasmon resonance biosensing through the surrounding metal on silicon-wire waveguide. When the TM wave is injected into the plasmon region, there are two surface plasmon waves on the two metal layer surfaces will be generated and interfered as the interferograms. This mechanism is equivalent to a Mach-Zehnder interferometer.

    The surface plasmon biosensor processing can be separated as three parts, lithography, etching, and deposition of chemical vapor and physical vapor, which photomask are carried by the waveguide layer, metal window and transition region between silicon-wire and plasmon. The first photomask is process related lithorgraphy and the precise waveguide size and etch depth are crucial to the optical performance. The second photomask is the sensing related open window and the deposition will be utilized for the growth of silicon dioxide and metal. The metal thickness control is very critical to the biosensing performance. Finally the third photomask will only be used to open the transition region between the silicon-wire and plasmon.

    摘要 I ABSTRACT II 致謝 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1簡介 1 1.2 研究動機 2 1.3 論文架構 3 第二章 波導理論與特性 4 2.1 波導結構 4 2.2 單多模條件 5 2.4 雙折射效應 7 2.5 波導傳播損耗 9 第三章 干涉 18 3.1 低同調光學干涉 18 3.1.1 馬赫-詹德干涉儀 18 3.2 馬赫-詹德干涉儀之Z 轉換[2] 20 3.3 馬赫詹德方向耦合器理論 30 3.4 表面電漿 33 3.4.1表面電漿 33 3.4.2表面電漿原理 34 3.4.3表面電漿之激發條件 36 第四章 半導體製程技術 39 4.1 矽線波導製程步驟 43 4.2 表面電漿波導製程步驟 60 第五章結論與展望 68 5.1 結論與展望 68 參考文獻 70

    [1] F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, "Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing," Optics Express, vol. 21, no. 10, p. 11652, May 2013.
    [2] C. K. Madsen and J. H. Zhao, Optical filter design and analysis: A signal processing approach. New York, NY: Wiley, John & Sons, 1999.
    [3] John, J. M, and Y. M. Jamro, Optical fiber communications: Principles and practice, 3rd ed. Harlow, England: Financial Times/Prentice Hall, 2008.
    [4] R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2/," IEEE Journal of Quantum Electronics, vol. 27, no. 8, pp. 1971–1974, 1991.
    [5] S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, "Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section," Journal of Lightwave Technology, vol. 23, no. 6, pp. 2103–2111, Jun. 2005.
    [6] T. Aalto, Microphotonic silicon waveguide components. Espoo, Finland: VTT, 2004.
    [7] K.-W. ANG and G.-Q. LO PATRICK, "AVALANCHE PHOTODIODES: Si charge avalanche enhances APD sensitivity beyond 100 GHz," 2010.
    [8] P. Dumon et al., "Low-loss SOI Photonic wires and ring Resonators fabricated with deep UV lithography," IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1328–1330, May 2004.
    [9] Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 6, pp. 1090–1101, Nov. 2002.
    [10] A. Sakai, G. Hara, and T. Baba, “Sharply bent optical waveguide on silicon-on-insulator substrate, ” Society of Photographic Instrumentation Engineers, Vol. 4283, pp. 610-618, 2001.
    [11] E. A. J. Marcatili, "Bends in optical Dielectric guides," Bell System Technical Journal, vol. 48, no. 7, pp. 2103–2132, Sep. 1969.
    [12] M. Heiblum and J. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE Journal of Quantum Electronics, vol. 11, no. 2, pp. 75–83, Feb. 1975.
    [13] Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Optics Express, vol. 12, no. 8, p. 1622, 2004.
    [14] V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, "Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides," Journal of Lightwave Technology, vol. 15, no. 6, pp. 990–997, Jun. 1997.
    [15] K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO[sub 2] waveguide: Experiments and model," Applied Physics Letters, vol. 77, no. 11, p. 1617, 2000.
    [16] D. Marcuse, "Mode conversion caused by surface imperfections of a Dielectric slab Waveguide," Bell System Technical Journal, vol. 48, no. 10, pp. 3187–3215, Dec. 1969.
    [17] F. P. Payne and J. P. R. Lacey, "A theoretical analysis of scattering loss from planar optical waveguides," Optical and Quantum Electronics, vol. 26, no. 10, pp. 977–986, Oct. 1994.
    [18] M. Heiblum and J. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE Journal of Quantum Electronics, vol. 11, no. 2, pp. 75–83, Feb. 1975.
    [19] F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size influence on the propagation loss induced by Sidewall roughness in Ultrasmall SOI Waveguides," IEEE Photonics Technology Letters, vol. 16, no. 7, pp. 1661–1663, Jul. 2004.
    [20] J. T. A. Carriere, J. A. Frantz, B. R. Youmans, S. Honkanen, and R. K. Kostuk, "Measurement of Waveguide birefringence using a ring Resonator," IEEE Photonics Technology Letters, vol. 16, no. 4, pp. 1134–1136, Apr. 2004.
    [21] R. März and R. Marz, Integrated optics: Design and modeling. Boston: Artech House Publishers, 1995.
    [22] S.-H. Hsu, "Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms," Journal of the Optical Society of America B, vol. 27, no. 5, p. 941, Apr. 2010.
    [23] B. E. Little and T. Murphy, "Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures," IEEE Photonics Technology Letters, vol. 9, no. 12, pp. 1607–1609, Dec. 1997.
    [24] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics, vol. 2, no. 8, pp. 496–500, Jul. 2008.
    [25] I. Avrutsky, R. Soref, and W. Buchwald, "Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap," Optics Express, vol. 18, no. 1, p. 348, Dec. 2009.
    [26] 廖高崧,金屬-介質-金屬波導結構的表面電漿分光器之研究,碩士論文,國立交通大學光電工程學系碩士班(2013)
    [27] 郭建銘,效能增強混合式表面電漿子波導管之設計與分析,碩士論文,國立清華大學工程系統科學系(2013)
    [28] 林君豪,以全向量虛軸有限元素波束傳播法分析數種表面電漿波導結構的模態特性,碩士論文,國立臺灣大學電機資訊學院光電工程學(2014)
    [29] S.-H. Hsu, J.-C. Hsu, and S.-C. Chen, "Interferometric fiber strain sensor using fiber Bragg grating based optical ruler," pp. 2–72, Jun. 2013, CLEO, p. JW2A 72. San Jose, California, USA, 2013.
    [30] M. Z. Alam, J. N. Caspers, J. S. Aitchison, and M. Mojahedi, "Compact low loss and broadband hybrid plasmonic directional coupler," Optics Express, vol. 21, no. 13, p. 16029, Jun. 2013.
    [31] J. Homola, J. Čtyroký, M. Skalský, J. Hradilová, and P. Kolářová, "A surface plasmon resonance based integrated optical sensor," Sensors and Actuators B: Chemical, vol. 39, no. 1-3, pp. 286–290, Mar. 1997.
    [32] 吳民耀,劉威志,"表面電漿子理論與模擬",物理雙月刊,廿八卷二期, pp. 486-496, 2006.
    [33] 邱國斌,蔡定平,"金屬表面電漿簡介",物理雙月刊,廿八卷二期, pp. 472-485, 2006.
    [34] J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: Review," Sensors and Actuators B: Chemical, vol. 54, no. 1-2, pp. 3–15, Jan. 1999.

    QR CODE