簡易檢索 / 詳目顯示

研究生: 蘇怡平
I-Ping Su
論文名稱: 以非線性增量動力分析法探討鋼 木混合結構系統韌性容量之研究
A Study on Ductility Capacity of Steel-Timber Hybrid Structures for Seismic Design using Nonlinear Incremental Dynamic Analysis
指導教授: 陳沛清
Pei-Ching Chen
口試委員: 陳正誠
Cheng-Cheng Chen
蕭博謙
Po-Chien Hsiao
蔡孟廷
Meng-Ting Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 101
中文關鍵詞: 增量動力分析鋼木混合結構韌性容量 R 值OpenSees最佳化勁度
外文關鍵詞: Incremental dynamic analysis, steel-timber hybrid structure, ductility capacity R value, OpenSees, optimized stiffness
相關次數: 點閱:185下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究建置鋼木混合結構系統之數值模型,其中混合結構之下部樓層為鋼結
構抗彎構架,上部樓層為木結構。木材設定為花旗松,鋼材設定為 SN490。使用
生物啟發式演算法,在設計地震力進行豎向分配後,進行鋼木混合結構的靜力分
析,並考慮國內耐震設計規範的限制之下,得到各樓層最佳的樓層勁度。依此最
佳化勁度修正結構週期,計算出相對應的設計地震力,再進行靜力分析並以生物
啟發式演算法得到最佳的樓層勁度,接著再進行修正結構週期直到最佳化結果趨
於收斂。最後,依照此最佳化之樓層勁度,以進行梁柱尺寸的設計與配置。本研
究建立三種不同高度之模型代表低、中、高之鋼木混合建築,再以 OpenSees 建
立鋼木結構的數值模型,鋼結構以及木結構均使用雙線性模型,並於木結構模型
設定破壞機制,使用 FEMA-P695 中詳述的增量動力分析法(Incremental Dynamic
Analysis, IDA)進行非線性動力分析。
本研究方法擬參考 FEMA-P695 建議方法進行 44 組地震的增量動力分析,
再依據其建議求出鋼木結構系統的極限狀態,了解鋼木結構韌性容量 R 值之合
理範圍。原鋼木結構三維結構模型兩水平方向各為 4 跨,若用此模型在 OpenSees
軟體執行非線性動力分析耗時甚久,為節省分析時間,本研究嘗試將二維平面結
構模型取代三維結構模型,其中,上部樓層利用等值斜撐模擬木結構之等值勁度。
故本研究比較二維及三維模型彈性時與非彈性時模型反應,最後根據非線性動力
分析結果發現,可以將二維平面結構模型取代三維結構模型之動力分析結果。
本研究希望以不改變現行耐震規範的條件下,把現行耐震規範用於鋼木混合
結構。因為在我國耐震規範鋼構建築韌性容量 R 值為 4.8,故本研究以假設鋼木
混合結構韌性容量 R 值為 4.8 下,去進行分析與討論。發現設立鋼木結構韌性容
量 R 值為 4.8,使用生物啟發式演算法,設立目標方程式為限制樓層位移角小於
0.004 及規範軟弱層之規定,以此設計方法求出之鋼木混合結構不符合 FEMAP695 中定義可接受的性能。但若將設立目標方程式改為限制樓層位移角小於
ii
0.003 及規範軟弱層之規定,以此設計方法求出之鋼木混合結構就可符合 FEMAP695 中定義可接受的性能。


This study builds a numerical model of a steel-timber hybrid structure, in which
the lower structure is a steel structure with moment resisting frame while the upper
structure is a timber structure. The timber material is set to Douglas fir, and the steel
material is set to SN490. After applying seismic force through vertical distribution,
static analysis using symbiotic organisms search (SOS) algorithm is carried out to
optimize the story stiffness of each floor considering the restrictions of seismic design
specification. According to this optimized stiffness, the structural period is then
modified and the corresponding design seismic force is re-calculated. Several iterations
are conducted until the optimization results tend to converge. Finally, according to the
optimized story stiffness, design and configuration of beam and column dimensions can
be completed. OpenSees is utilized to build the numerical model of the steel-timber
hybrid structure. On the premise that the steel structure is a bilinear model and the
timber structure is an elastoplastic model with collapse mechanism, the Incremental
Dynamic Analysis method detailed in FEMA-P695 is used for nonlinear dynamic
analysis.
A total number of 44 earthquakes are recommended in the FEMA-P695 method
for IDA. The limit state of the steel-timber hybrid structure according can be assessed
through IDA. Eventually, the ductility capacity of structural systems R for steel-timber
structures can be evaluated. In the meantime, the original 3D steel-timber structure
model has 4 spans in both orthogonal horizontal directions. The 3D model is used to
perform nonlinear dynamic analysis in OpenSees which is time consuming. In order to
reduce the elapse time of analyses, the original 3D structural model is simplified to a
2D plane structural model. Among them, the upper floors with timber members are
iv
modelled using equivalent diagonal braces to simulate the equivalent stiffness of the
timber structure. This study compared the response of the 2D and 3D models in
elasticity and inelasticity. According to the results of nonlinear dynamic analysis, it was
found that the dynamic analysis results of the 3D structure model can be replaced by
the 2D structure model.
This study hoped to apply the current seismic code to steel-timber hybrid
structures. Because the ductility capacity for steel structures in our country's seismic
code is 4.8, this study assumed that the ductility capacity for steel-timber hybrid
structures is 4.8. This study found that the ductility capacity of steel-timber structure is
4.8. Using symbiotic organisms search (SOS) algorithm, the objective function is set
the story drift less than 0.003, and the limit is to follow the weak layers regulation from
seismic design specification. The steel-timber structures obtained by this designed
method meet the acceptable performance defined in FEMA-P695.

摘要 .............................................................. i ABSTRACT ........................................................ iii 致謝 .............................................................. v 表目錄 ......................................................... viii 圖目錄 ............................................................ x 第一章 緒論 ....................................................... 1 1.1 研究背景........................................................................................................................ 1 1.2 研究動機及目的............................................................................................................ 1 1.3 論文架構........................................................................................................................ 2 第二章 文獻回顧 ................................................... 4 2.1 非線性側推分析(Pushover Analysis)............................................................................ 4 2.2 增量動力分析 (Incremental Dynamic Analysis).......................................................... 4 2.2.1 增量動力分析定義................................................................................................. 5 2.2.2 單一增量動力分析曲線的容量和極限狀態 ......................................................... 6 2.3 FEMA-P695 之韌性容量 R 值訂定............................................................................ 6 2.4 生物啟發式演算法(Symbiotic Organisms Search, SOS).............................................. 7 第三章 鋼木結構模型建立之方法 ..................................... 9 3.1 鋼木結構模型建立........................................................................................................ 9 3.1.1 鋼木結構模型之材料............................................................................................. 9 3.1.2 鋼木結構模型之尺寸訂定..................................................................................... 9 3.1.3 樓層最佳勁度之訂定........................................................................................... 10 3.1.4 梁柱斷面尺寸設計配置....................................................................................... 12 3.1.5 等值斜撐斷面....................................................................................................... 12 3.1.6 非線性分析軟體 OpenSees.................................................................................. 13 3.1.7 鋼結構與木結構的遲滯行為............................................................................... 15 3.1.8 三維模型簡化為二維模型................................................................................... 15 3.2 鋼木結構模型檢核...................................................................................................... 16 3.2.1 梁柱斷面尺寸檢核............................................................................................... 16 vii 3.2.2 彈性靜力分析與動力分析結果........................................................................... 17 3.2.3 三維模型與二維模型之比較............................................................................... 17 3.2.4 混合結構各階段桿件內力分析........................................................................... 19 3.3 OpenSees 與 Midas 與 Etabs 模型之比較 ................................................................... 20 第四章 非線性動力分析與結果 ...................................... 22 4.1 分析所使用之地震...................................................................................................... 22 4.2 增量動力分析定義整體不穩定.................................................................................. 23 4.3 增量動力分析結果...................................................................................................... 24 4.4 倒塌裕度比(Collapse Margin Ratios) ......................................................................... 26 第五章 鋼木結構韌性容量 R 值訂定 .................................. 28 5.1 非線性側推分析結果.................................................................................................. 28 5.2 調整倒塌裕度比(Adjusted Collapse Margin Ratios).................................................. 29 5.3 總系統倒塌不確定性(Total system collapse uncertainty).......................................... 31 5.4 韌性容量 R 值訂定 ..................................................................................................... 32 第六章 結論與建議 ................................................ 34 附錄 A ........................................................... 37 一、 樓層最佳勁度之訂定............................................................................................... 37 二、 斷面尺寸設計配置................................................................................................... 38 三、 增量動力分析結果................................................................................................... 40 四、 非線性側推分析結果............................................................................................... 40 五、 韌性容量 R 值訂定 .................................................................................................. 42 六、 鋼木混合結構韌性容量 R 值為 4.8 之設計流程.................................................... 43 附錄 B ........................................................... 44 一、 斷面尺寸檢核........................................................................................................... 44 二、 強柱弱梁檢核........................................................................................................... 45 三、 樓層位移角檢核....................................................................................................... 46 參考文獻 ......................................................... 47

[1] 李桃生(2014)。國産造林木材應用於木構造建築。台北市:行政院農業委員會
林務局。
[2] FEMA. (2009). Quantification of Building Seismic Performance Factors, Rep. No.
FEMA-P695. Applied Technology Council.
[3] Padmakar Maddala. (2013). Pushover Analysis of Steel Frame. Department of
civil engineering, national institute of technology.
[4] Bertero, V. V. (1997). Strength and deformation capacities of buildings under
extreme environments. In Structural Engineering and Structural Mechanics.
[5] Luco, N., and Cornell, C. A. (2000). Effects of connection fractures on SMRF
seismic drift demands. ASCE Journal of Structural Engineering.
[6] Luco, N., and Cornell, C. A. (1998). Effects of random connection fractures on
demands and reliability for a 3-storey pre-Northridge SMRF structure.
Proceedings of the 6th U.S. National Conference on Earthquake Engineering.
[7] Yun, S. Y., Hamburger, R. O., Cornell, C. A., and Foutch, D. A. (2002). Seismic
performance for steel moment frames. ASCE Journal of Structural Engineering.
[8] Vamvatsikos, D., and Cornell, C. A. (2002). The incremental dynamic analysis
and its application to performance-based earthquake engineering. Proceedings of
the 12th European Conference on Earthquake Engineering.
[9] Vamvatsikos, D., and Cornell, C. A. Incremental dynamic analysis. Earthquake
Engineering and Structural Dynamics. 31(3) ,491-514.
[10] Cheng, M. Y., and Prayogo, D. (2014). Symbiotic organisms search: A new
metaheuristic optimization algorithm. Comput Struct.
[11] Shu Nagaoka, Hiroshi Isoda, Takahiro Tsuchimoto, and Hidemaru Shimizu.
48
(2012). Experimental study of collapse limit deformation on Japanese wood house.
J.Struct.Constr.Eng.AIJ.
[12] 內政部營建署(2011)。建築物耐震設計規範及解說。
[13] 蔡孟廷(2013)。多層木質平立面混構造における耐震要素の構面剛性が応
答変位に及ぼす影響と評価基準に関する研究。
[14] Lee, J. MSC/NASTRAN Common Questions and Answers. MacNealSchwendler Corporation.
[15] OpenSees. (2005). Open system for earthquake engineering simulation, http://
OpenSees.berkeley.edu.
[16] AISC. (2010). Seismic Provisions for Structural Steel Buildings. American
Institute of Steel Construction.
[17] Pacific Earthquake Engineering Research Center, http://peer.berkeley.edu/.
[18] FEMA. (2000). Recommended seismic design criteria for new steel momentframe buildings. Report No. FEMA-350.
[19] Gokkaya, B. U., Baker, J. W., and Deierlein, G. G. Quantifying the impacts of
modeling uncertainties on the seismic drift demands and collapse risk of buildings
with implications on seismic design checks. Earthquake Eng Struct Dyn .
[20] ASCE-7-05. (2005). Minimum Design Loads for Buildings and Other Structures.
American Society of Civil Engineers.
[21] Krawinkler, H., and Seneviratna, GDPK. Pros and cons of a pushover analysis
of seismic performance evalution. Engineering Structures. 20(4) ,452–464.
[22] American Society of Civil Engineers. (2010). Minimum design loads for
buildings and other structures. American Society of Civil Engineers

QR CODE