簡易檢索 / 詳目顯示

研究生: 劉桓志
Huan-Chih Liu
論文名稱: LED微型投影機的散熱設計之模擬與實驗整合研究
An Integrated Numerical and Experimental Investigation on Thermal Management of LED Pico Projector
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
none
洪俊卿
none
莊福盛
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 233
中文關鍵詞: 散熱座自然對流強制對流鰭片投影機
外文關鍵詞: LED, Heat Sink, force convection, natural convection, fin
相關次數: 點閱:271下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

自LED微型投影機產品問世後,許多電子產品均試圖內建LED微型投影機來吸引消費者。但受限於LED封裝材料與特性,操作溫度需控制在晶片能承受的範圍內,因此與其它電子產品作整合之前,必須先將LED微型投影機散熱模組作最佳化之設計。本研究先對原型投影機進行鰭片間距最佳化、外殼材質之選用及均溫設計,再將模擬分析之最佳參數用於第一代投影機散熱設計上。從數值結果顯示,第一代投影機在體積縮小約20%之情形下,已能於自然對流散熱設計中,將LED接觸面溫度從130℃降低至67.6℃,且高溫之晶片也能獲得有效的改善;而強制對流方案則沿用自然對流之Heat Sink與外殼模型,挑選合適之風扇以及設計最佳進氣路徑後,已成功將第一代投影機(2.75W)強制對流機型的LED接觸面溫度降低至66.7℃。
另外,基於各階層消費者之考量,在引進工業設計後接著設計第二代投影機的散熱設計,並將其分為無噪音型與高效能型。而第二代投影機之無噪音型尺寸較第一代投影機減少30%的情形下,經鰭片間距最佳化設計以及開孔率之調整進行分析後,其散熱模組已能處理4W之LED輸入功率,並將LED接觸面溫度控制在安全限度內(70℃以內);而高效能之強制對流散熱型投影機在體積增加約60%後,藉由數值分析針對出入風口與開孔位置作規劃設計,接著再進行2510風扇與Heat Sink作系統化的參數分析,最後藉由CNC技術製作第二代LED微型投影機之強制對流散熱模組與實體模型,並將其實機測試與模擬數據比對以驗證其準確性。值得一提的是,第二代投影機之高效能型散熱模組已能於LED實際輸入功率6W情形下,將LED接觸面溫度降至68.7℃。綜合歸納來說,本研究所建立之散熱模組設計流程,能有系統且嚴謹地完成微投影機的散熱設計,且經實驗證實能解決LED微投影機的散熱問題。


This research focuses on developing the thermal designs of several. This research focuses on developing the thermal designs of several LED pico projectors for different sizes and various heat-dissipating alternatives. At first, a sample projector is chosen to perform CFD simulation and experimental measurement for validating the numerical tool established here. Also, the calculated flow patterns and temperature distributions are visualized and used to generate ideas for upgrading its thermal-management capability. Thereafter, a comprehensive parametric study on heat sink, cover material, and heat-spreading plate is performed successfully to reduce LED temperature from 130℃ to 64℃, which is under the safety temperature limit 70℃. Next, with the aids of the aforementioned experience and a series of CFD simulations, two projector prototypes are developed, fabricated, and tested for meeting customers’ light-weight and high-brightness needs, respectively. Also, both passive and active heat-transfer strategies are considered for each projector to yield the noiseless or the high-performance models. Note that the light-weight version is compacted with a 30% size reduction and the function-oriented version is expanded with a 60% size enlargement compared to the volume of sample projector. Thereafter, heat sink optimization, airflow-path redesign, ventilating-hole addition, and choosing fan size and installing location are implemented on the thermal design via an in-depth CFD simulation and analysis.
As a result, the comparisons between on-board test and the numerical calculation indicate an acceptable temperature deviation within 1.1℃ for all the projector designs considered in this study. Moreover, the noiseless compact projector can operate safely around 70℃ with a 4W LED power input and under the 30℃ environmental temperature. Also, the high-brightness projector functions normally with a 69.9℃ LED temperature and 6W power input. Consequently, this established design scheme successfully generates several thermal modules to control the LED chip temperature below the safety limit for various projector sizes and different cooling approaches. In conclusion, the accomplishment of this research offers a rigorous and systematic design scheme for the thermal management on the LED pico projector.

摘要I AbstractIII 致 謝IV 目錄V 圖索引XI 表索引XVII 符號索引XXI 第一章 緒論1 1.1 前言1 1.2 微型LED投影機的發展歷史5 1.3 應用於微型LED投影機之散熱元件評估14 1.3.1主動式散熱15 1.3.2被動式散熱17 1.4文獻回顧20 1.4.1自然對流之熱傳鰭片應用23 1.4.2強制對流之散熱應用25 1.4.3投影機之散熱設計研究29 1.5研究動機與方法31 第二章 物理模式與數值方法42 2.1統御方程式43 2.2 數值計算理論46 2.2.1 離散化方式46 2.2.2 壓力與速度耦合的處理50 2.2.3 數值求解流程52 2.3紊流模式52 2.4 數值邊界條件設定55 2.5熱傳遞原理與熱阻定義60 2.5.1熱傳遞原理60 2.5.2熱阻定義62 2.5.3 LED之熱阻結構63 2.6自然對流下之散熱鰭片設計65 2.6.1流體流動型態的判定65 2.6.2鰭片之最佳間距68 第三章 實驗規格與網格驗證72 3.1實驗設備72 3.1.1恆溫環境量測與資料擷取系統72 3.1.2溫度感測器與校正77 3.2元件規格78 3.3 網格獨立性驗證88 第四章 第一代LED微型投影機之散熱設計90 4.1 LED發熱瓦數用於數值分析上之驗證90 4.1.1 LED實際發熱瓦數確認92 4.1.2 LED發熱瓦數用於數值模擬之計算方法93 4.2原型投影機之自然對流的散熱模組設計101 4.2.1 原型投影機模型之驗證101 4.2.2自然對流之散熱模組設計107 4.2.3 原型LED微型投影機之均溫設計111 4.3 第一代投影機之自然對流散熱模組設計115 4.3.1自然對流之散熱模組改良117 4.3.2加入晶片熱量之影響123 4.3.3數值分析模型之確立125 4.3.4散熱模組之實驗與模擬驗證128 4.4 第一代LED微型投影機之強制對流散熱設計129 4.4.1 強制對流之微型風扇選用132 4.4.2 出風口位置與開孔調整136 4.4.3加入晶片熱量之數值模擬與實機測試139 第五章 第二代LED微型投影機之散熱設計146 5.1 第一代投影機之功率分析與CFD軟體比較146 5.1.1 CFD軟體精密度之比較驗證147 5.1.2 投影機空間與承受LED功率之關係148 5.2第二代投影機之自然對流散熱設計152 5.2.1第二代投影機之詳細規格與適用場合154 5.2.2散熱模組之最佳化設計156 5.2.3散熱極限與開孔設計157 5.2.4加入晶片熱量之影響168 5.2.5空間尺寸對系統散熱之影響168 5.3 第二代LED微型投影機之強制對流散熱設計174 5.3.1出入風口與開孔位置設計175 5.3.2 2510風扇與Heat Sink搭配之最佳化設計180 5.3.3 LED功率分析與加入晶片發熱量之影響191 第六章 第二代微型投影機的實機測試199 6.1第二代投影機之散熱模組模擬分析結果199 6.2第二代投影機之強制對流散熱模組的實機驗證208 第七章 結論與建議220 7.1 結論220 7.1.1第一代LED投影機221 7.1.2第二代LED投影機223 7.2 建議226 參考文獻229 作者簡介233

[1]Taiwan Seiya LED,http://www.ledcase.com/LED.htm
[2]Philips Lumileds Lighting, U.S. LLC., "Power Light Source LUXEON III Emitter", Technical Datasheet DS45, www.lumileds.com.
[3]陳智禮,揚鈞杰,"高功率LED的散熱處理",工業材料雜誌,231期,139-145頁,2006年。
[4]LEDinside of Trendforce Corp., http://www.ledinside.com.tw/
[5]Petroski, J., "Thermal Challenges Facing New Generation Light Emitting Diodes(LEDs) for Lighting Applications", Solid State Lighting II, Proceedings of the SPIE, Vol. 4776, pp. 215-222, 2002.
[6]王崇岳,”桌上型電腦散熱模組之參數分析”,中原大學機械工程研究所碩士論文,2005年。
[7]Transferred from en.wikipedia, transfer was stated to be made by User:Maniago.http://zh.wikipedia.org/wiki/File:Heat_Pipe_Mechanism.png
[8]Bar-Cohen, A. and Rohsenow,W. M., "Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates", ASME Journal of Heat Transfer, Vol. 106, pp. 116-123, 1984.
[9]Morrison, A. T., "Optimization of Heat Sink Fin Geometries for Heat Sinks in Natural Convection", InterSociety Conference on Thermal Phenomena, pp. 145-148, 1992.
[10]Bejan, A., Tsatsaronis, G., and Moran, M., "Thermal Design and Optimization", Wiley, pp. 241-256, 1996.
[11]Bar-Cohen, A., Iyengar, M., and Kraus, A. D., "Design of Optimum Plate-Fin Natural Convective Heat Sinks", Journal of Electronic Packaging, Vol. 125, pp. 208-216, June 2003.
[12]沈季儒,”針狀鰭片陣列與水平板在自然對流下之散熱效能研究”,國立清華大學動力機械工程研究所碩士論文,2007年。
[13]李冠賢,”垂直放置鰭片之自然對流熱傳性能實驗研究”,國立中央大學機械工程研究所碩士論文,2010年。
[14]Lau, K. S. and Mahajan, R. L., "Effects of Tip Clearance and Fin Density on the Performance of Heat Sinks for VLSI Packages", IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 12, No. 4, pp.757-765, 1998.
[15]Bazydola, S. M. and Taslim, M., "An Experimental Investigation of a Staggered Array of Heat Sinks in the Hydrodynamic and Thermal Entrance Regions of a Duct", Journal of Electronic, ASME, Vol. 115, pp. 106-111, 1993.
[16]Chapman, C. L., Lee, S., and Schmidt, B. L., "Thermal Performance of an Elliptical Pin Fin Heat Sink", Tenth IEEE Semi-Therm, pp. 24-31, 1994.
[17]Mansuria, M. S. and Kamath, V., "Design Optimization of a High Performance Heat Sink / Fan Assembly " ,Proc. of ASM, Vol.292, pp. 95-103, 1994.
[18]Wang, D. G., "Optimization of System Fan Placement", Proceeding of the 2000 IEMT/IMC Thermal Management, April 2000.
[19]Turner, Mike and Rotron, Comair, "All You Need to Know about Fans" , Electronics Cooling, January, 2000.
[20]鄭憶湘,”散熱片在強制對流下之最佳化設計與實驗”,國立清華大學工程與系統科學研究所碩士論文,2002年。
[21]周建安,”小型冷卻風扇在不同流阻下之性能研究”,國立台灣科技大學機械工程研究所博士論文,2004年。
[22]吳兌倩,”流線型鰭片散熱座數值與實驗之整合研究”,國立台灣科技大學機械工程研究所碩士論文,2003年。
[23]黎俊和,”液晶投影機的發展介紹與對數位光源處理投影機之光機研究”,國立交通大學機械工程研究所碩士論文,2003年。
[24]陳柏安,”DLP液晶投影機之熱流場數值分析”,國立台灣科技大學機械工程研究所碩士論文,2004年。
[25]張志賢,”投影機之散熱分析與對策”,國立清華大學工程與系統科學研究所碩士論文,2006年。
[26]陳文揚,”液晶投影機控制參數對關鍵組件之影響研究”,國立台灣海洋大學機械與機電工程研究所碩士論文,2007年。
[27]Patankar, S. V. and Spalding, D. B., "A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows", International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
[28]Launder, B. E. and Spalding, D. B., "Lectures in Mathematical Models of Turbulence" ,Academic Press, London, England, 1972.
[29]Churchill, S. W. and Chu, H. H. S., "Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate", Int. J. Heat Mass Transfer, Vol. 18, pp. 1323-1329, 1975.
[30]Risun Expanse Corp. , http://www.risun.com.tw/
[31]ADDA Corporation, http://www.adda.com.tw/tw/

QR CODE