簡易檢索 / 詳目顯示

研究生: Nandya Shafira Pramesti
Nandya Shafira Pramesti
論文名稱: 兩階段信用交易下智慧聯網產品的最佳定價、生產與智慧化決策
Optimal Pricing, Production and Intelligentization Policies for Smart, Connected Products Under Two-Level Trade Credits
指導教授: 曹譽鐘
Yu-Chung Tsao
口試委員: 王孔政
Kung-Jeng Wang
林希偉
Shi-Woei Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 77
中文關鍵詞: 經濟生產批量模型智慧連網產品定價決策批量決策信用交易
外文關鍵詞: EPQ inventory model, smart, connected products, pricing, lot-sizing, trade credit
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的發展,物聯網中的產品逐漸從傳統實體產品轉變成智慧連網產品。產品的功能帶動了智慧連網產品的發展趨勢,功能較好的產品必會提高其價格。當產品的功能超出顧客所預期的價值,顧客可能不太願意支付其功能衍生出的額外成本。因此,本研究假設產品需求將會隨著其價格下降以及其智慧程度上升而提升。實務上,供應商時常會提供信用交易(亦即延遲付款)給製造商與顧客,以吸引更多的銷售量。在智慧連網產品,信用交易會顯得特別重要,因其降低智慧連網產品的價格界限。本研究的目標即在兩階段信用交易的情況下,針對智慧連網產品訂定出最佳銷售價格、批量、以及智慧程度以最大化製造商的年度利潤。研究建立一經濟生產批量模型,並求出最佳解及其相關條件。數值分析與敏感度分析則來說明了理論結果與求解方法。


    The development of technology, such as the Internet of Things (IoT), has transformed traditional physical products into smart, connected products (SCP). While the enhanced product's capabilities have risen the trend of SCPs, the higher capabilities a product have, would certainly increase the product's selling price. Customer may not want to pay for the extra functionality, as the addition of enhanced capabilities and options may reach beyond what customer perceives as value, due to extra cost and the increase complexity of use. Hence, in this research, the product's demand is assumed to increase as the product's selling price decreases and the effort to improve product intelligence (i.e., intelligent effort) increases. Moreover, in practice, manufacturer often receive a permissible delay in payment (trade credit) from the supplier while also offering it to the customers to attract more sales. It is particularly important in the case of SCPs, as trade credit could act as a payment plan that would reduce SCPs' price barrier. Hence, the objective of this thesis is to determine the optimal selling price, lot size and level of intelligent effort in a single SCP to maximize the manufacturer's annual profit under two-level trade credits. An economic production quantity (EPQ) model is developed, and the condition of the optimal solution is derived. Numerical examples and sensitivity analysis are carried out to illustrate the theoretical results and solution approach.

    摘要 .......................................................................................................................... i ABSTRACT ........................................................................................................... ii ACKNOWLEDGMENT ..................................................................................... iii TABLE OF CONTENTS ..................................................................................... iv LIST OF FIGURES ............................................................................................. vi LIST OF TABLES ............................................................................................. viii CHAPTER 1 .......................................................................................................... 1 1.1 Background .................................................................................................... 1 1.2 Research Objectives ....................................................................................... 5 1.3 Research Structure ......................................................................................... 6 CHAPTER 2 .......................................................................................................... 8 2.1 Price-dependent Demand Function in Inventory Models .............................. 8 2.2 Trade Credit Policies ..................................................................................... 9 2.3 Smart, Connected Product (SCP) ................................................................ 12 CHAPTER 3 ........................................................................................................ 15 3.1 Notation ....................................................................................................... 15 3.2 Problem Description .................................................................................... 16 3.3 Mathematical Model .................................................................................... 18 (a) Case 1: ?≥? and ?≤?+? .............................................................. 19 (b) Case 2: ?≥? and ?≥?+? .............................................................. 20 (c) Case 3: ?≤? ....................................................................................... 21 CHAPTER 4 ........................................................................................................ 23 4.1 Theoretical Results ...................................................................................... 23 4.2 Solution Algorithm ...................................................................................... 30 CHAPTER 5 ........................................................................................................ 34 5.1 Numerical Examples .................................................................................... 34 5.1.1 Sensitivity Analysis: Price Coefficient ................................................. 40 5.1.2 Sensitivity Analysis: Intelligent Effort Coefficient .............................. 41 5.1.3 Sensitivity Analysis: Physical Component Cost .................................. 42 5.1.4 Sensitivity Analysis: Cost of Intelligent Effort .................................... 44 5.1.5 Sensitivity Analysis: Number of Potential Customer ........................... 45 5.1.6 Sensitivity Analysis: Production Rate .................................................. 47 5.1.7 Sensitivity Analysis: Downstream Trade Credit Period ....................... 48 5.1.8 Sensitivity Analysis: Upstream Trade Credit Period ............................ 49 5.1.9 Sensitivity Analysis: Holding Cost ...................................................... 50 5.1.10 Sensitivity Analysis: Set-up Cost .................................................. 50 5.1.11 Sensitivity Analysis: Interest Rate Earned .................................... 51 5.1.12 Sensitivity Analysis: Interest Rate Charged .................................. 52 5.2 Key Findings ................................................................................................ 53 CHAPTER 6 ........................................................................................................ 58 6.1 Conclusions ................................................................................................. 58 6.2 Suggestions for Future Research ................................................................. 59 REFERENCES .................................................................................................... 61

    Accenture. (2016). Igniting Growth in Consumer Technology. 1–15.
    Accenture. (2019). 2019 Digital Consumer Survey: Reshape to Relevance. In Accenture.
    ACEA. (2019). Roadmap for the deployment of automated driving in the European Union. https://www.acea.be/uploads/publications/ACEA_Automated_Driving_Roadmap.pdf
    Banerjee, S., & Agrawal, S. (2017). Inventory model for deteriorating items with freshness and price dependent demand : Optimal discounting and ordering policies. Applied Mathematical Modelling, 52, 53–64. https://doi.org/10.1016/j.apm.2017.07.020
    Capgemini Invent. (2019). Connected Vehicle Trend Radar, The drive to add value: lessons from China. https://www.capgemini.com/wp-content/uploads/2019/08/Connected-Vehicle-Trend-Radar.pdf
    Capgemini Research Institute. (2018). Digital Engineering: The new growth engine for discrete manufacturers. In Capgemini. https://doi.org/10.3139/9781569907979.006
    Chakravarti, S., & Jain, A. (2018). Why Your Products Must be Smart and Connected. The Business Opportunities, November 2014, 26–37.
    Chang, C., Ouyang, L., & Teng, J. (2003). An EOQ model for deteriorating items under supplier credits linked to ordering quantity. 27, 983–996. https://doi.org/10.1016/S0307-904X(03)00131-8
    Chang, C., Teng, J., & Chern, M. (2010). Optimal manufacturer’ s replenishment policies for deteriorating items in a supply chain with up-stream and down-stream trade credits. Intern. Journal of Production Economics, 127(1), 197–202. https://doi.org/10.1016/j.ijpe.2010.05.014
    Chen, L., Chen, X., Keblis, M. F., & Li, G. (2019). Optimal pricing and replenishment policy for deteriorating inventory under stock-level-dependent , time-varying and price-dependent demand. Computers & Industrial Engineering, 135(June 2018), 1294–1299. https://doi.org/10.1016/j.cie.2018.06.005
    Chen, S., Teng, J., & Skouri, K. (2014). Economic production quantity models for deteriorating items with up-stream full trade credit and down-stream partial trade credit. Intern. Journal of Production Economics, 155, 302–309. https://doi.org/10.1016/j.ijpe.2013.07.024
    Chenavaz, R. (2012). Dynamic pricing, product and process innovation. European Journal of Operational Research, 222, 553–557. https://doi.org/10.1016/j.ejor.2012.05.009
    Chung, K., Cárdenas-barrón, L. E., & Ting, P. (2014). An inventory model with non-instantaneous receipt and exponentially deteriorating items for an integrated three layer supply chain system under two levels of trade credit. International Journal of Production Economics, 155, 310–317. https://doi.org/10.1016/j.ijpe.2013.12.033
    Chung, K. J., & Huang, Y. F. (2003). The optimal cycle time for EPQ inventory model under permissible delay in payments. In International Journal of Production Economics (Vol. 84, Issue 3, pp. 307–318). https://doi.org/10.1016/S0925-5273(02)00465-6
    Das, S., Khan, A., Mahmoud, E. E., Abdel-aty, A., Abualnaja, K. M., and Akbar, A. (2021). A production inventory model with partial trade credit policy and reliability. Alexandria Engineering Journal, 60(1), 1325–1338. https://doi.org/10.1016/j.aej.2020.10.054
    Deloitte. (2017). Connected products: Restoring brand value and reimagining consumer relationships (Issue March). https://www2.deloitte.com/content/dam/Deloitte/au/Documents/consumer-industrial-products/deloitte-au-cip-connected-products-150317.pdf
    Duan, Y., Cao, Y., and Huo, J. (2018). Optimal pricing , production, and inventory for deteriorating items under demand uncertainty : The finite horizon case. Applied Mathematical Modelling, 58, 331–348. https://doi.org/10.1016/j.apm.2018.02.004
    Dye, C. Y., and Yang, C. Te. (2015). Sustainable trade credit and replenishment decisions with credit-linked demand under carbon emission constraints. European Journal of Operational Research, 244(1), 187–200. https://doi.org/10.1016/j.ejor.2015.01.026
    Feng, H., Li, J., and Zhao, D. (2013). Retailer’ s optimal replenishment and payment policies in the EPQ model under cash discount and two-level trade credit policy. Applied Mathematical Modelling, 37(5), 3322–3339. https://doi.org/10.1016/j.apm.2012.07.012
    Feng, L., and Chan, Y. L. (2019). Joint pricing and production decisions for new products with learning curve effects under upstream and downstream trade credits. European Journal of Operational Research, 272(3), 905–913. https://doi.org/10.1016/j.ejor.2018.07.003
    Feng, L., Chan, Y. L., and Cárdenas-Barrón, L. E. (2017). Pricing and lot-sizing polices for perishable goods when the demand depends on selling price, displayed stocks, and expiration date. International Journal of Production Economics, 185(July 2016), 11–20. https://doi.org/10.1016/j.ijpe.2016.12.017
    Gao, S., Zhang, X., and Peng, S. (2016). Understanding the Adoption of Smart Wearable Devices to Assist Healthcare in China. Social Media: The Good, the Bad, and the Ugly, 1, 280–291. https://doi.org/10.1007/978-3-319-45234-0
    Giri, B. C., and Maiti, T. (2013). Supply chain model with price- and trade credit- sensitive demand under two-level permissible delay in payments. International Journal of Systems Science, September 2014, 37–41. https://doi.org/10.1080/00207721.2011.649367
    Giri, B. C., and Sharma, S. (2017). Optimising an integrated production – inventory system under cash discount and retailer partial trade credit policy. International Journal of Systems Science: Operations & Logistics, 6(2), 99–118. https://doi.org/10.1080/23302674.2017.1371358
    GlobalData. (2019). Wearable Technology in Healthcare (Issue August). https://www.tauli.cat/institut/wp-content/uploads/2020/06/wearables-GlobalData_WearableTechnologyinHealthcare_220819.pdf
    Goyal, S. K. (1985). Economic Order Quantity under Conditions of Permissible Delay in Payments. The Journal of the Operational Research Society, 36(4), 335–338. https://doi.org/10.2307/2582421
    Harris, F. W. (1913). How many parts to make at once.
    Hu, F., & Liu, D. (2010). Optimal replenishment policy for the EPQ model with permissible delay in payments and allowable shortages. Applied Mathematical Modelling, 34(10), 3108–3117. https://doi.org/10.1016/j.apm.2010.01.016
    Huang, J., & Leng, M. (2013). Demand Functions in Decision Modeling : A Comprehensive Demand Functions in Decision Modeling : A Comprehensive Survey and Research Directions *. July. https://doi.org/10.1111/deci.12021
    Huang, Y.-F. (2003). Optimal retailer’s ordering policies in the EOQ model under trade credit financing. Journal of the Operational Research Society, 54(9), 1011–1015. https://doi.org/10.1057/palgrave.jors.2601588
    Huang, Y. (2007). Optimal retailer’ s replenishment decisions in the EPQ model under two levels of trade credit policy. European Journal of Operational Research, 176(168), 1577–1591. https://doi.org/10.1016/j.ejor.2005.10.035
    Huang, Y., & Hsu, K. (2008). An EOQ model under retailer partial trade credit policy in supply chain. 112(0925), 655–664. https://doi.org/10.1016/j.ijpe.2007.05.014
    Hwang, H., & Shinn, S. W. (1997). Retailer’s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Computers and Operations Research, 24(6), 539–547. https://doi.org/10.1016/S0305-0548(96)00069-X
    IDC. (2021). IDC Forecasts Double-Digit Growth for Smart Home Devices as Consumers Embrace Home Automation and Ambient Computing. https://www.idc.com/getdoc.jsp?containerId=prUS47567221
    IoT Analytics. (2020). State of the IoT 2020: 12 billion IoT connections, surpassing non-IoT for the first time. IoT Analytics. https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
    Kahle, J. H., Marcon, É., Ghezzi, A., & Frank, A. G. (2020). Smart Products value creation in SMEs innovation ecosystems. Technological Forecasting and Social Change, 156(April), 120024. https://doi.org/10.1016/j.techfore.2020.120024
    Karahoca, A., Karahoca, D., & Aksoz, M. (2018). Examining intention to adopt to internet of things in healthcare technology products. Kybernetes, 47(4), 742–770. https://doi.org/10.1108/K-02-2017-0045
    Kreng, V. B., & Tan, S. (2011). Optimal replenishment decision in an EPQ model with defective items under supply chain trade credit policy. Expert Systems With Applications, 38(8), 9888–9899. https://doi.org/10.1016/j.eswa.2011.02.040
    Li, R., Chan, Y. L., Chang, C. T., & Cárdenas-Barrón, L. E. (2017). Pricing and lot-sizing policies for perishable products with advance-cash-credit payments by a discounted cash-flow analysis. International Journal of Production Economics, 193(June), 578–589. https://doi.org/10.1016/j.ijpe.2017.08.020
    Li, R., Skouri, K., Teng, J., & Yang, W. (2018). Seller ’ s optimal replenishment policy and payment term among advance , cash , and credit payments. International Journal of Production Economics, 197(November 2017), 35–42. https://doi.org/10.1016/j.ijpe.2017.12.015
    Li, R., Yang, H. L., Shi, Y., Teng, J. T., & Lai, K. K. (2021). EOQ-based pricing and customer credit decisions under general supplier payments. European Journal of Operational Research, 289(2), 652–665. https://doi.org/10.1016/j.ejor.2020.07.035
    Li, X., & Qi, X. (2021). On pricing and quality decisions with risk aversion R. Omega, 98, 102118. https://doi.org/10.1016/j.omega.2019.102118
    Liao, J. (2007). On an EPQ model for deteriorating items under permissible delay in payments. Applied Mathematical Modelling, 31, 393–403. https://doi.org/10.1016/j.apm.2005.11.016
    Mahata, G. C. (2012). An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade credit policy in supply chain. Expert Systems With Applications, 39(3), 3537–3550. https://doi.org/10.1016/j.eswa.2011.09.044
    Manfreda, A., Ljubi, K., & Groznik, A. (2021). Autonomous vehicles in the smart city era: An empirical study of adoption factors important for millennials. International Journal of Information Management, 58(December 2019). https://doi.org/10.1016/j.ijinfomgt.2019.102050
    Min, J., Zhou, Y., Liu, G., & Wang, S. (2012). An EPQ model for deteriorating items with inventory- level-dependent demand and permissible delay in payments. International Journal of Systems Science, September 2014, 37–41. https://doi.org/10.1080/00207721.2012.659685
    Nikou, S. (2019). Factors driving the adoption of smart home technology : An empirical assessment. Telematics and Informatics, 45(September), 101283. https://doi.org/10.1016/j.tele.2019.101283
    Ouyang, L., & Chang, C. (2013). Optimal production lot with imperfect production process under permissible delay in payments and complete backlogging. International Journal of Production Economics, 144(2), 610–617. https://doi.org/10.1016/j.ijpe.2013.04.027
    Ouyang, L., Yang, C., Chan, Y., & Cárdenas-barrón, L. E. (2013). A comprehensive extension of the optimal replenishment decisions under two levels of trade credit policy depending on the order quantity. Applied Mathematics and Computation, 224, 268–277. https://doi.org/10.1016/j.amc.2013.08.062
    Panetta, K. (2016). Market Research Report for internet of things. https://www.gartner.com/smarterwithgartner/7-technologies-underpin-the-hype-cycle-for-the-internet-of-things-2016/
    Pardo, C., Ivens, B. S., & Pagani, M. (2020). Are products striking back? The rise of smart products in business markets. Industrial Marketing Management, 90(April 2019), 205–220. https://doi.org/10.1016/j.indmarman.2020.06.011
    Porter, M. E., & Heppelmann, J. E. (2014). How smart, connected products are transforming competition. Harvard Business Review, 92(11), 64–88.
    Porter, M. E., & Heppelmann, J. E. (2015). How smart, connected products are transforming companies. Harvard Business Review, 93(10), 96–114.
    Raff, S., Wentzel, D., & Obwegeser, N. (2020). Smart Products: Conceptual Review, Synthesis, and Research Directions*. Journal of Product Innovation Management, 37(5), 379–404. https://doi.org/10.1111/jpim.12544
    Seifert, D., Seifert, R. W., & Protopappa-sieke, M. (2013). A review of trade credit literature : Opportunities for research in operations. European Journal of Operational Research, 231(2), 245–256. https://doi.org/10.1016/j.ejor.2013.03.016
    Shi, Y., Zhang, Z., Chen, S.-C., Cárdenas-Barrón, L. E., & Skouri, K. (2020). Optimal replenishment decisions for perishable products under cash , advance , and credit payments considering carbon tax regulations. International Journal of Production Economics, 223(September 2019). https://doi.org/10.1016/j.ijpe.2019.09.035
    Shin, J., Park, Y., & Lee, D. (2018). Who will be smart home users ? An analysis of adoption and di ff usion of. Technological Forecasting & Social Change, 134(January), 246–253. https://doi.org/10.1016/j.techfore.2018.06.029
    Shinn, S. W. (1997). Determining optimal retail price and lot size under day-terms supplier credit. Computers & Industrial Engineering, 33(3), 717–720. https://doi.org/https://doi.org/10.1016/S0360-8352(97)00230-1
    Taft, E. W. (1918). The Most Economical Production Lot. The Iron Age, 101, 1410–1412.
    Teng, J.-T. (2002). On the economic order quantity under conditions of permissible delay in payments. Journal of the Operational Research Society, 53(8), 915–918. https://doi.org/10.1057/palgrave.jors.2601410
    Teng, J.-T., & Goyal, S. K. (2007). Optimal ordering policies for a retailer in a supply chain with up-stream and down-stream trade credits. The Journal of the Operational Research Society, 58(9), 1252–1255. https://doi.org/10.1057/palgrave.jors.2602404
    Teng, J. (2009). Int . J . Production Economics Optimal ordering policies for a retailer who offers distinct trade credits to its good and bad credit customers. Intern. Journal of Production Economics, 119(2), 415–423. https://doi.org/10.1016/j.ijpe.2009.04.004
    Teng, J., & Chang, C. (2009). Optimal manufacturer’ s replenishment policies in the EPQ model under two levels of trade credit policy. European Journal of Operational Research, 195(2), 358–363. https://doi.org/10.1016/j.ejor.2008.02.001
    Teng, J., Chang, C., & Goyal, S. K. (2005). Optimal pricing and ordering policy under permissible delay in payments. International Journal of Production Economics, 97, 121–129. https://doi.org/10.1016/j.ijpe.2004.04.010
    Teng, J., Lou, K., & Wang, L. (2014). Optimal trade credit and lot size policies in economic production quantity models with learning curve production costs. International Journal of Production Economics, 155, 318–323. https://doi.org/10.1016/j.ijpe.2013.10.012
    Teng, J., & Thompson, G. L. (1996). Optimal strategies for general price-quality decision models of new products with learning production costs 1. 7(1983).
    Thangam, A. (2012). Optimal price discounting and lot-sizing policies for perishable items in a supply chain under advance payment scheme and two-echelon trade credits. Intern. Journal of Production Economics, 139(2), 459–472. https://doi.org/10.1016/j.ijpe.2012.03.030
    Tirole, J. (2010). The theory of corporate finance. Princeton University Press.
    Tiwari, S., Cárdenas-Barrón, L. E., Goh, M., & Shaikh, A. A. (2018). Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain. International Journal of Production Economics, 200(March), 16–36. https://doi.org/10.1016/j.ijpe.2018.03.006
    Urban, T. L., & Baker, R. C. (1997). Theory and Methodology Optimal ordering and pricing policies in a single-period environment with multivariate demand and markdowns. 103, 573–583.
    Wang, J., Lim, M. K., Wang, C., & Tseng, M. L. (2021). The evolution of the Internet of Things (IoT) over the past 20 years. Computers and Industrial Engineering, 155(February), 107174. https://doi.org/10.1016/j.cie.2021.107174
    Wilson, N., & Summers, B. (2002). Trade Credit Terms Offered by Small Firms : Survey Evidence and Empirical Analysis. 29(February 2001).
    World Economic Forum. (2020). State of the Connected World 2020 Edition. December, 1–82.
    Wu, J., Al-khateeb, F. B., Teng, J., & Cárdenas-barrón, L. E. (2016). Inventory models for deteriorating items with maximum lifetime under downstream partial trade credits to credit-risk customers by discounted cash- flow analysis. Intern. Journal of Production Economics, 171, 105–115. https://doi.org/10.1016/j.ijpe.2015.10.020
    Wu, J., & Chan, Y. (2014). Lot-sizing policies for deteriorating items with expiration dates and partial trade credit to credit-risk customers. International Journal of Production Economics, 155, 292–301. https://doi.org/10.1016/j.ijpe.2014.03.023
    Wu, J., Skouri, K., Teng, J., & Ouyang, L. (2014). A note on “optimal replenishment policies for non-instantaneous deteriorating items with price and stock sensitive demand under permissible delay in payment.” International Journal of Production Economics, 155, 324–329. https://doi.org/10.1016/j.ijpe.2013.12.017
    Wu, J., Teng, J., & Skouri, K. (2018). Optimal inventory policies for deteriorating items with trapezoidal-type demand patterns and maximum lifetimes under upstream and downstream trade credits. Annals of Operations Research, 264(1), 459–476. https://doi.org/10.1007/s10479-017-2673-2
    Yoon, C., Lim, D., & Park, C. (2020). Factors affecting adoption of smart farms: The case of Korea. Computers in Human Behavior, 108(May 2019), 106309. https://doi.org/10.1016/j.chb.2020.106309
    Zou, X., & Tian, B. (2020). Retailer ’ s optimal ordering and payment strategy under two-level and flexible two-part trade credit policy. Computers & Industrial Engineering, 142(May 2019), 106317. https://doi.org/10.1016/j.cie.2020.106317

    無法下載圖示 全文公開日期 2024/06/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE