簡易檢索 / 詳目顯示

研究生: 陳蒼詠
Tsang-Yung Chen
論文名稱: 具突衝模式操作之高效率同步式降壓型穩壓器
A High-Efficiency Synchronous Buck Converter with Burst-Mode Operation
指導教授: 羅有綱
Yu-kang Lo
邱煌仁
Huang-jen Chiu
劉邦榮
Pang-jung Liu
口試委員: 歐勝源
Sheng-yuan Ou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 65
中文關鍵詞: 零電流偵測電路突衝模式脈衝寬度調變降壓型穩壓器
外文關鍵詞: zero current detector, Burst mode, PWM, buck converter
相關次數: 點閱:215下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文採用脈衝寬度調變(PWM)及突衝模式(Burst mode)來實現高效率同步式降壓型穩壓器。此穩壓器重載時操作於脈衝寬度調變模式,而輕載時操作於突衝模式。輕載時,穩壓器的主要損耗為切換損失,故藉由降低切換頻率與加入零電流偵測電路,以提升轉換效率。
規格如下:輸入電壓為5 V,輸出電壓為3.3 V,PWM模式下切換頻率為1 MHz,而突衝模式下為700 kHz。200mA以下操作於突衝模式電路,而200 mA以上操作於PWM電路。藉由選擇此兩種不同的工作模式,轉換器在大範圍的負載下,均可達到最佳的轉換效率。在突衝模式下,當負載電流為70 mA最高效率可達88.17%,在PWM模式下,負載電流為400 mA最高效率為94.28%。


This thesis implements a high-efficiency synchronous buck converter with pulse width modulation (PWM) or Burst mode. The buck converter operates with PWM at heavy load and with Burst mode at light load. The dominant power loss of dc-dc converters at light load is switching loss. Therefore, the converter efficiency can be improved by reducing the switching frequency and adding zero current detector circuit.
The specifications of the buck converter are the input voltage of 5 V, output voltage of 3.3 V, and the converter switching frequency of 1 MHz at the PWM mode or 700 kHz at the Burst mode. The buck converter operates at the PWM Mode when the load current is higher than 200 mA, or the converter operates at the Burst mode. The presented converter with these two operation modes achieves optimal efficiency at a wide range of the load current. The maximum efficiency with the Burst mode is 88.4% at load current of 70 mA. At the PWM mode, the maximum efficiency is 94.8% at loading current of 400 mA.

摘 要I Abstract II 誌 謝III 目 錄IV 第一章 緒論1 1.1 研究背景及簡介1 1.2 研究動機與目的3 1.3 論文組織架構5 第二章 直流-直流電壓轉換器概論6 2.1切換式降壓型穩壓器原理6 2.1.1 連續導通模式7 2.1.2 不連續導通模式9 2.1.3 邊界導通模式11 2.2 電壓模式脈衝寬度調變13 2.3 電流模式脈衝寬度調變15 2.4 脈衝頻率調變19 2.4.1 固定導通及非固定導通時間調變19 2.4.2 脈衝省略21 2.4.3 突衝模式22 2.5 脈衝寬度調變與脈衝頻率調變之比較24 第三章 電路控制方式及規格26 3.1 效率定義26 3.1.1 切換損耗27 3.1.2 寄生效應損耗27 3.1.3 靜態損耗27 3.2 線性穩壓調節率28 3.3 負載穩壓調節率28 3.4 暫態響應28 第四章 改善效率之雙模式切換電路設計31 4.1 研究電路及系統架構方塊圖31 4.2 電壓模式PWM電路操作分析32 4.3 Burst mode電路操作分析33 4.4 PWM及Burst mode操作機制偵測分析34 第五章 電路設計分析及架構39 5.1 系統架構分析39 5.2 功率級40 5.3 比較器40 5.4 脈波產生器42 5.5 鋸齒波產生器43 5.6 緩衝放大器44 5.7 轉導放大器46 5.8 電流感測電路48 5.9 零電流偵測器50 第六章 系統模擬及佈局52 6.1 電壓模式脈衝寬度調變模擬52 6.1.1 線性穩壓模式52 6.1.2 負載穩壓模式52 6.2 突衝模式電路模擬53 6.2.1 線性穩壓模式54 6.2.2 負載穩壓模式55 6.3 零電流偵測器56 6.4 實體電路佈局56 6.5 系統模擬效率59 第七章 結論與未來展望61 7.1 結論61 7.2 未來展望61 參考文獻62

[1]R. W. Erickson, “DC-DC Power Converter,” article in Wiley Encyclopedia of Electrical and Electronics Engineering.
[2]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronic, 2nd Ed. , Kluwer Academic Publishers, 2000.
[3]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converter, Applications, and Design, John Wiley & Sons, 3rd Edition, 2003.
[4]M. Gildersleeve, H. P. F. zadeh, and G.A Rincon-Mora, "A comprehensive power analysis and a highly efficient, mode-hopping DC-DC converter,". IEEE Asia-Pacific Conference, pp. 153-156, 2002.
[5]V. Vorperian, “Simplified Analysis of PWM Converters Using Model of PWM Switch Part I: Continuous Conduction Mode,” IEEE Trans. on Aerospace and Electronic Systems, vol. 26, no. 3, May 1990.
[6]X. Zhou, M. Donati, L. Amoroso, and F. C. Lee, "Improved Light-Load Efficiency for Synchronous Rectifier Voltage Regulator Module, " IEEE Trans. on Power Electronics, vol.15, no.5, pp.826-834, June 2000.
[7]梁適安,交換式電源供應器之理論與實務設計,二版,全華科技圖書,2008。
[8]陳秋麟、林振宇、楊大勇,「降低切換式電源之待機功率損失」,崇貿科技術專欄,2003。

[9]J. C. Tsai, T. Y. Huang, W. W. Lai, and K. H. Chen, “Dual Modulation Technique for High Efficiency in High Switching Buck Converters Over a Wide Load Range,” IEEE ISCAS 2010, pp.3709-3712, May 2010.
[10]游宗穎,「具有脈衝寬度調變和脈衝頻率調變之同步高效率互補式金氧半切換式穩壓器」,碩士論文,國立交通大學,新竹 (2003)。
[11] J. Xiao, A. V. Peterchev, J. Zhang, and S. R. Sanders, “A 4-μA quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2342–2348, Dec. 2004.
[12]W. R. Liou, M. L. Yeh, and Y. L. Kuo, "A High Efficiency Dual-Mode Buck Converter IC For Portable Applications", IEEE Trans. on Power Electronics, vol.23, No.2, Mar.2008.
[13]柯欣欣,「使用高精準度電流偵測技巧之高轉換效能同步互補式金氧半降壓切換式穩壓器」,碩士論文,國立中央大學,桃園 (2007)。
[14]黃威霖,「適合低電壓應用端的高效率CMOS 直流轉直流切換式穩壓器」,碩士論文,國立成功大學,台南 (2004)。
[15]J. M .Liu, C. J. Yu, Y. C. Kuo, and T. H. Kuo, “Optimizing the Efficiency of DC-DC Converters with an Analog Variable-Frequency Controller,” IEEE Asia Pacific Conference on Circuits and Systems, pp. 910-913, Dec. 2008.
[16] M. D. Mulligan, B. Broach, and T. H. Lee, “A Constant-frequency Method for Improving Light-load Efficiency in Synchronous Buck Converters,” IEEE Power Electronics Letters, 2005, vol. 3, pp. 24-29.
[17] J. H. Kim, J. B. Shin, J. Y. Sim, and H. J. Park“5-Gb/s Peak Detector Using a Current Comparator and a Three-State Charge Pump,” IEEE Trans. on circuits and systems , vol. 58, no. 5, May 2011.
[18] P. E. Allen and D. R. Holberg, “CMOS Analog Circuit Design,” Oxford university press, 2002.
[19] B. Razavi, “Design of Analog CMOS Integrated Circuits,” Boston, MA: McGraw-Hill, 2001.
[20] Y. H. Li, W. H. Kuo, C. F. Chen and P. K. T. Mok, "Single-inductor dual-input dual-output switching converter for integrated battery charging and power regulation," in Proc. IEEE Int. Symp. Circuits and Systems, pp. 447-450, 2003.
[21] Y. C. Li and Y. M. Chi, "A Systematic Approach to Synthesizing Multi-Input DC-DC Converters," IEEE Trans. on Power Electronics, vol. 24, pp. 116-127, 2009.
[22]B. Sahu, G. A. Rincon-Mora, “An accurate low-voltage CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) Control,” IEEE Trans. Circuits Syst. I, vol. 54, no.2, pp.312-321, Feb. 2007.
[23]S. H. Jung, N. S. Jung, J. T. Hwang, G. H. Cho, “An integrated CMOS DC-DC converter for battery-operated systems,” Power Electronics Specialists Conference, Volume: 1, Pages:43 - 47 vol.1, July 1999.
[24] D. Kwon and G. A. Rincon-Mora, "Single-Inductor-Multiple-Output Switching DC-DC Converters," IEEE Trans. Circuits Syst. I, vol. 56, pp. 614-618, Aug. 2009.
[25] D. S. Ma, W. H. Ki, and C. Y. Tsui, “A pseudo-CCM/DCM SIMO switching converter with freewheel switching,” IEEE Journal of Solid-State Circuits, Vol. 38, Issue 6, Page(s) 1007-1014, June, 2003.
[26] C. L. Chen, W. L. Hsieh, W. J. Lai, K. H. Chen, and C. S. Wang, “A new PWM/PFM control technique for improving efficiency over wide load range,” in IEEE International Conf. Electronics, Circuits and Systems, Aug. 2008, pp. 962-965
[27]H. W. Huang, K. H. Chen, and S. Y. Kuo, "Dithering Skip Modulation, Width and Dead Time Controllers in Highly Efficient DC-DC Converters for System-On-Chip Applications", IEEE J. Solid-State Circuits, vol.42,No.11,Nov. 2007.
[28]H. M. Hsin, H. H. Wei, P. J. Yan, T. T. Ling, L. M. Chin, W. C. Sung, and C. K. Horng, "Single-inductor dual-output (SIDO) DC-DC converters for minimized cross regulation and high efficiency in SoC supplying systems," Proc. IEEE Int. Midwest Symp. Circuits and Systems, pp. 550-553, 2007.
[29]D. Ma, W. H. Ki, P. K. T. Mok and T. C. Ying, "Single-inductor multiple-output switching converters with bipolar outputs," Proc. IEEE Int. Symp. Circuits and Systems, vol. 2, pp. 301-304, 2001.
[30]C. F. Lee and P. K.T. Mok, “A Monolithic Current-Mode CMOS DC-DC Converter With On-Chip Current-Sensing Technique,” IEEE J. Solid-State Circuit, vol 39, no. 1, pp 3-14, Jan 2004.

無法下載圖示 全文公開日期 2017/08/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2017/08/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE