簡易檢索 / 詳目顯示

研究生: 陳姵華
Pei-Hua Chen
論文名稱: 含低溫鍛燒稻殼灰漿體之力學與耐久性質
Mechanical Properties and Durability of Paste with Rice Husk Ashes Calcined at Low Temperature
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 黃兆龍
Chao-Lung Hwang
張大鵬
Ta-Peng Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 117
中文關鍵詞: 低溫鍛燒稻殼灰水泥砂漿鹼激發力學性質耐久性質
外文關鍵詞: low-temperature calcination, rice husk ash, cement mortar, alkali activation, mechanical properties, durability
相關次數: 點閱:370下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要探討含低溫鍛燒稻殼灰漿體之力學與耐久性質,試驗試體包括水泥砂漿和鹼激發漿體兩種。首先依據CNS 3036進行試驗,探討稻殼灰之使用性,結果顯示經過四種鍛燒溫度(400-1000 °C)後之稻殼灰皆符合規範要求。接著在水灰比0.6下,以體積部分取代水泥進行抗壓強度。結果顯示使用低溫鍛燒稻殼灰之試體抗壓強度較高,使用鍛燒溫度400 °C之稻殼灰比控制組高約 2.4%,600 °C之稻殼灰比控制組高約41.2%,推測原因為稻殼灰富含碳基成分及孔隙造成水灰比降低進而使強度提升。此外,結果亦發現400 °C鍛燒之稻殼灰具有抑制鹼矽粒料反應的效果。鹼激發漿體試驗中使用稻殼灰以體積部分取代爐石粉。試驗結果顯示,使用高濃度之鹼性激發劑可得較高的抗壓強度。然而,添加稻殼灰過多時降低耐久性,最佳的添加量約在10%。使用混合灰時,結果顯示添加飛灰可提升91天強度,但添加過多稻殼灰仍會將低強度,微觀分析顯示試體中有乾縮裂縫,推測為強度降低之因素。


This study explores the mechanical properties and durability of the paste with rice husk ashes (RHA) calcined at low temperature. The specimens included the cement mortar and the alkali-actived slag paste. The experiments in accordance to CNS 3036 were firstly conducted. Results showed that the four RHA’s calcined at temperature ranging from 400 to 1000 °C met the requirements. The cement mortar specimens were then prepared by partial replacements for the cement using the RHA at water-cement ratio of 0.6. Results showed that those specimens with RHA had higher compressive strength than the plain. The one with RHA calcined at 400 °C had strength higher than the plain by 2.4% and the one with RHA calcined at 600 °C had strength higher by 41.2%. It is assumed that the RHA’s had high carbon content and micropores so that the strength was increased. In addition, the RHA calcined at 400 °C were found to inhibit the ASR expansion. On the other hand, in alkali-activated specimens, the slag was partially replaced by the RHA. Results showd that the application of the highly alkali solution induced high strength. However, the excess RHA addition reduced durability and the optimum addition was around 10%. By using the combined coal fly ashes and RHA, the 91-day strengths were increased by the fly ash. Again, the excess RHA addition reduced the strength. The microanalyses showed that the specimens had micro shrinkage cracks, possibly reducing the strengths.

摘要 Abstract 誌謝 目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究方法與流程 第二章 文獻回顧 2.1 水泥 2.2 卜作嵐材料 2.2.1 水淬高爐石粉 2.2.2 飛灰 2.2.3 稻殼灰 2.2 鹼激發材料 2.3 無機聚合物 2.3.1 反應機理 2.3.2 微觀結構 2.3.3 物化性質 2.3.4 實務應用 第三章 試驗規劃 3.1 試驗內容及變數 3.1.1 試驗內容 3.1.2 試驗變數 3.1.3 編碼說明 3.2 試驗材料與設備 3.2.1 試驗材料 3.2.2 試驗設備 3.3 試驗設計與項目 3.3.1 物理性質試驗 3.3.2 力學性質試驗 3.3.3 耐久性質試驗 3.3.4 微觀分析 第四章 試驗結果與討論 4.1 先期試驗 4.1.1 黏度試驗 4.1.2 拌合方法 4.1.3 鹼激發劑溶液比例 4.2 水泥砂漿 4.2.1 力學試驗 4.2.2 乾縮試驗 4.2.3 抗鹼矽粒料反應試驗 4.2.4 熱壓膨脹試驗 4.3 鹼激發水泥漿 4.3.1 力學試驗 4.4 鹼激發水淬爐石粉漿 4.4.1 力學試驗 4.4.2 耐久試驗 4.5 X光繞射試驗分析 4.6 掃描式電子顯微鏡分析 第五章 結論與建議 5.1 結論 5.1.1 水泥砂漿 5.1.2 鹼激發漿體 5.2 建議 參考文獻 附錄一 坍流度試驗結果

Al-Mansour, F.,J. Zuwala (2010). "An evaluation of biomass co-firing in europe." Biomass and Bioenergy 34(5): 620-629.

ASTM-C39/C39m-14 (2014). Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken,PA, ASTM International.

ASTM-C150/C150m-12 (2012). Astm international 2015. Standard Specification for Portland Cement. West Conshohocken,PA, ASTM International.

ASTM-C596-09 (2015). Standard test method for drying shrinkage of mortar containing hydraulic cement, ASTM International.

ASTM-C618-15 (2015). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken,PA, ASTM International.

ASTM-C1260-14 (2014). Standard test method for potential alkali reactivity of aggregates (mortar-bar method). West Conshohocken, PA, ASTM International.

Bakharev, T., J. G. Sanjayan,Y. B. Cheng (1999). "Alkali activation of australian slag cements." Cement and Concrete Research 29(1): 113-120.

Basile, F., S. , G. F. Biagini,M. Collepardi (1987). "Effect of the gypsum state in industrial cements on the action of superplasticizers." Cement and Concrete Research 17(5): 715-722.

Bridgeman, T. G., L. I. Darvell, J. M. Jones, P. T. Williams, R. Fahmi, A. V. Bridgwater, T. Barraclough, I. Shield, N. Yates, S. C. Thain,I. S. Donnison (2007). "Influence of particle size on the analytical and chemical properties of two energy crops." Fuel 86(1–2): 60-72.

Brough, A. R., M. Holloway, J. Sykes,A. Atkinson (2000). "Sodium silicate-based alkali-activated slag mortars part ii. The retarding effect of additions of sodium chloride or malic acid." Cement and Concrete Research 30(9): 1375-1379.

Chatveera, B.,P. Lertwattanaruk (2011). "Durability of conventional concretes containing black rice husk ash." Journal of Environmental Management 92(1): 59-66.

Cheng, T. W.,J. P. Chiu (2003). "Fire-resistant geopolymer produced by granulated blast furnace slag." Minerals Engineering 16(3): 205-210.

Chindaprasirt, P., T. Chareerat,V. Sirivivatnanon (2007). "Workability and strength of coarse high calcium fly ash geopolymer." Cement and Concrete Composites 29(3): 224-229.

CNS 1010 (2011). 水硬性水泥墁料抗壓強度檢驗法(用50 mm或2 in 立方體試體)經濟部標準檢驗局,中華民國國家標準。

CNS 1258 (2010). 卜特蘭水尼熱壓膨脹試驗法,經濟部標準檢驗局,中華民國國家標準。

CNS 3036 (2003). 混凝土用飛灰及天然或煆燒卜作嵐攙和物,經濟部標準檢驗局, 中華民國國家標準。

CNS 10896 (2003). 卜特蘭水泥混凝土用飛灰或天然卜作嵐礦物摻料之取樣及檢驗法,經濟部標準檢驗局,中華民國國家標準。

CNS 11273 (2011). 水硬性水泥以試驗篩0.045 mm cns386濕篩試驗法,經濟部標準檢驗局,中華民國國家標準。

CNS 12549 (2014). 混凝土及水泥砂漿用水淬高爐爐碴粉,經濟部標準檢驗局,中華民國國家標準。

CNS 14603 (2011). 硬固水泥砂漿及混凝土長度試驗法,經濟部標準檢驗局,中華民國國家標準。

Cook, D. J. (1984). Development of microstructure and other properties in rice husk ash - opc systems. The Ninth Australasian Conference on the Mechanics of Structures and Materials, Australia, University of Sydney.

Davidovits, J. (1994). "Global warming impact on the cement and aggregates industries." Published in World Resource Review 6(2): 263-278.

Davidovits, J.,M. Davidovics (1988). Geopolymer: Room‐temperature ceramic matrix for composites. Ceramic Engineering Science Proceedings, American.

Davidovits, J., C. James, R. Davidovits (1999). Chemistry of geopolymer systems terminology. Proceedings of Geopolymer 99 Second International Conference, Institut Geopolymere, Saint-Quentin, France.

Demirbaş, A. (2003). "Sustainable cofiring of biomass with coal." Energy Conversion and Management 44(9): 1465-1479.

Duxson, P., J. L. Provis, G. C. Lukey, F. Separovic,J. S. J. V. Deventer (2005). "29si nmr study of structural ordering in aluminosilicate geopolymer gels." Langmuir 21(7): 3028-3036.

Ganesan, K., K. Rajagopal,K. Thangavel (2008). "Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete." Construction and Building Materials 22(8): 1675-1683.

Glukhovsky, V. D. (1959). "Soil silicates." Kiev. USSR:Gostroiizdat.

He, J., Y. Jie, J. Zhang, Y. Yu,G. Zhang (2013). "Synthesis and characterization of red mud and rice husk ash-based geopolymer composites." Cement and Concrete Composites 37(5): 108-118.
Hernández, J. J., G. Aranda-Almansa,A. Bula (2010). "Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time." Fuel Processing Technology 91(6): 681-692.

Ismail, M. S.,A. M. Waliuddin (1996). "Effect of rice husk ash on high strength concrete." Construction and Building Material 10(7): 521-526.

Kalembkiewicz, J.,U. Chmielarz (2012). "Ashes from co-combustion of coal and biomass: New industrial wastes." Resources, Conservation and Recycling 69(12): 109-121.

Kastanaki, E.,D. Vamvuka (2006). "A comparative reactivity and kinetic study on the combustion of coal–biomass char blends." Fuel 85(9): 1186-1193.

Khan, R., A. Jabbar, I. Ahmad, W. Khan, A. N. Khan,J. Mirza (2012). "Reduction in environmental problems using rice-husk ash in concrete." Construction and Building Materials 30(5): 360-365.

Kumar, A., K. Mohanta, D. Kumar,O. Parkash (2012). "Properties and industrial applications of rice husk: A review." International Journal of Emerging Technology and Advanced Engineering 2(10): 86-90.

Kumar, S.,R. Kumar (2011). "Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer." Ceramics International 37(2): 533-541.

Li, C., H. Sun,L. Li (2010). "A review: The comparison between alkali-activated slag (si+ca) and metakaolin (si+al) cements." Cement and Concrete Research 40(9): 1341-1349.

Lloyd, R. R., J. L. Provis,J. S. J. V. Deventer (2009). "Microscopy and microanalysis of inorganic polymer cements. 1: Remnant fly ash particles." Applied Clay Science 44(2): 608-619.

Maragkos, I., I. P. Giannopoulou,D. Panias (2009). "Synthesis of ferronickel slag-based geopolymers." Minerals Engineering 22(2): 196-203.

Mindess, S.,J. F. Young (1981). Concrete. Prentice - Hall, Englewood Cliffs, London.

Muthadhi, A., R. Anitha,S. Kothandaraman (2007). "Rice husk ash – properties and its uses: A review." Institution of Engineers 88(5): 50-56.

Palomo, M. W. G. A.,M. T. Blanco (1999). "Alkali-activated fly ashes: A cement for the future." Cement and Concrete Research 29(8): 1323-1329.

Paya, J., J. Monzo, M. V. Borrachero, E. Peris-Mora,L. M. Ordonez (2000). "Studies on crystalline rice husk ashes and the activation of their pozzolanic properties." Waste Management Series 1(6): 493-503.

Phair, J. D. S. J. W.,J. S. J. Van Deventer (2003). "Characteristics of aluminosilicate hydrogels related to commercial geopolymers." Materials Letters 57(28): 4356-4367.

Pritz, D.,P. K. Mehta (1978). "Use of rice husk ash to reduce temperature in high strength mass concrete." Aci Journal75(2): 60-63.

Purdon, A. O. (1940). "The action of alkali on the blast furnace slag." Journal Of The Society of Chemical Industry 59(5): 191-202.

Rattanasak, U.,C. Prinya (2009). "Influence of naoh solution on the synthesis of fly ash geopolymer." Minerals Engineering 22(12): 1073-1078.

Sami, M., K. Annamalai,M. Wooldridge (2001). "Co-firing of coal and biomass fuel blends." Progress in Energy and Combustion Science 27(2): 171-214.

Saraswathy, V.,H. W. Song (2007). "Corrosion performance of rice husk ash blended concrete." Construction and Building Materials 21(8): 1779-1784.
Shi, C. (1996). "Strength, pore structure and permeability of alkali-activated slag mortars." Cement and Concrete Research 26(12): 1789-1799.

Swanepoel, J. C.,C. A. Strydom (2002). "Utilisation of fly ash in a geopolymeric material." Applied Geochemistry 17(8): 1143-1148.

Trettin, R., P. Z. Wang,V. Rudert (2005). "Effect of fineness and particle size distribution of granulated blast-furnace slag on the hydraulic reactivity in cement systems." Advances in Cement Research 17(4): 161-166.

Tuan, B. L. A. (2013). "The use of black rice husk ash in concrete." Department Of Construction Engineering, Ph.D., National Taiwan University of Science and Technology: 136.

Wang, S. D., X. C. Pu, K. L. Scivener,P. L. Pratt (1995). "Alkali-activated cement and concrete. A review of properties and problems." Advances in Cement Research 7(99): 93-102.

Wu, D. S.,C. L. Hwang (1989). "Properties of cement paste containing rice husk ash." American Concrete Institute 114(5): 733-765.

Xu, H.,J. S. J. Van Deventer (2000). "The geopolymerisation of alumino-silicate minerals." International Journal Minerals Process 59(3): 247-266.

Xu, H., J. S. J. Van Deventer,G. C. Lukey (2001). "Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures." Industrial Engineering Chemical Research 40(17): 3749-3756.

Xu, Z.,W. X. Zhou Huanhai (1993). "Kinetic study on hydration of alkali-activated slag." Cement and Concrete Research 23(6): 1253-1258.

Yeoh, A. K., R. Bidin, C. N. Chong,C. Y. Tay (1979). The relationship between temperature and duration of burning of rice-husk in the development of amorphous rice-husk ash silica. Proceedings of Unido/Escap/Rctt, Follow-Up Meeting on Rice-Husk Ash Cement, Alor Setar, Malaysia.

Zaharaki, D., K. Komnitsas,V. Perdikatsis (2009). "Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers." Journal of Hazardous Materials 161(2-3): 760-768.

Zain, M. F. M., M. N. Islam, F. Mahmud,M. Jamil (2011). "Production of rice husk ash for use in concrete as a supplementary cementitious material." Construction and Building Materials 25(2): 798-805.

Zhang, Z., H. Wang, Y. Zhu, A. Reid, J. L. Provis,F. Bullen (2014). "Using fly ash to partially substitute metakaolin in geopolymer synthesis." Applied Clay Science 88-89(2): 194-201.

日本土木學會 (1996). 高爐石粉末應用於混凝土施工指針,日本。

代新祥,文梓芸 (2001). "土壤聚合物水泥" 新型建築材料,北京,6:34-35。

李宜桃 (2003). "鹼活化還原渣收縮及抑制方法之研究" 土木工程研究所,碩士論文,國立中央大學。

周楚洋 (2012). "國內生質燃料的料源調查與應用評估計畫" 行政院環境保護署環境檢驗所委託之專題研究成果報告,編號:EPA-101-1605-02-05,台北市,環保署: 11-15。

邱俊萍 (2006). "利用高爐爐渣製成無機聚合材料之研究" 材料及資源工程系, 碩士論文,國立台北科技大學。

洪文方 (1985). "普通水泥中添加高爐熟料之影響" 碩士論文,國立台灣工業技術學院。

孫家瑛,諸培南 (1998). "礦渣在鹼性溶液激發下的機理" 矽酸鹽通報17(6)。

許樹恩,吳泰伯 (1996). X光繞射原理與材料結構分析,中國材料科學學會,中國。

陳志賢 (2009). "含矽質廢棄物之無機聚合物" 土木研究所,博士論文,國立成功大學。

陳朝和 (1987). 飛灰混凝土使用手冊,台電公司煤灰處理與利用小組:5-6。

黃立遠 (2010). "飛灰基無機聚合物工程性質及應用之研究" 營建工程研究所, 碩士論文,國立台灣科技大學。

黃兆龍 (2007). 混凝土性質與行為,詹氏書局,台北市。

楊奉儒,周佳靜,陳清齊 (2007). 以偏高領土製備無機聚合建材之研究,台灣環境資源永續發展研討會,桃園: 6-150。

戴詩潔 (2002). "高嶺石鋁矽酸鹽聚合材料之研究" 資源工程研究所,碩士論文,國立台北科技大學。

顏永霖 (2015). "添加不同鍛燒溫度與時間下稻殼灰之砂漿力學與耐久性質" 營建工程研究所,碩士論文,國立台灣科技大學。

無法下載圖示 全文公開日期 2022/08/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE