簡易檢索 / 詳目顯示

研究生: 鐘幻苹
Huan-Ping Jhong
論文名稱: 硒氰酸根鍵結過渡二硫族金屬修飾於多孔性碳材應用於提升氧氣還原反應效能
Enhanced Activity of Selenocyanate-containing Transition Metal Dichalcogenides Supported by Mesoporous Carbon for Oxygen Reduction
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 施劭儒
Shao-Ju Shih
吳嘉文
Chia-Wen Wu
洪逸明
Yi-Ming Hong
廖英志
Ying-Chih Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 116
中文關鍵詞: 氧氣還原反應燃料電池二硒化鈷硒氰酸根
外文關鍵詞: Anion Alkaline Exchange Fuel Cells (AAEMFC), Oxygen Reduction Reaction (ORR), Cobalt Diselenide (CoSe2), Selenocyanate (SeCN-)
相關次數: 點閱:396下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究透過控制含有鈷以及硒之前驅物比例,再搭配界面活性劑與溶劑的使用,經水熱法處理後可得一特殊形貌之二硒化鈷。而利用此實驗流程,加入適當比例之碳材及尿素後,再使用化學氣相沉積儀燒結至特定溫度,即可製備出最佳條件之觸媒(CoSe2/NC)。經電化學量測後得知,該觸媒具有最佳之氧氣還原活性且其電子轉移數可達3.994,非常接近理想之電子轉移數4.0。另外,觸媒在經過線性掃描法(Linear Sweep Voltammetry)方式30000圈穩定性測試後,其半波電位衰退率僅5.9%,可知此觸媒在反應的過程中具備極佳之穩定性。同時也在鹼性陰離子交換膜燃料電池(Anion Alkaline Exchange Membrane Fuel Cell)測試中,達到146.3 mW cm-2 的高輸出功率。
此具有高催化活性及穩定性的觸媒可歸因於兩個因素,首先從氮的近邊X射線吸收細微結構(Near Edge X-Ray Absorption Fine Structure)圖譜中得知,有一特徵峰顯現為Co-N鍵結在鍵結能396.3eV的位置。因為氮原子本身具有的高電負度與二價鈷提供的空軌域,有效地促進電子轉移,進而增加活性。再者,硒氰酸根(SeCN-)的結構也因為其具有較高的氧化電位,因此可提升氧氣還原反應進行的效率。
利用此簡易的方法製備出具有獨特形貌之新穎高效率電催化觸媒,相信應用在其他電化學反應或系統中,也是極具發展潛力的選擇。


Cobalt diselenide is used to synthesize a transition metal with an active center that is supported by nitrogen-doped carbon materials—CoSe2/NC. CoSe2/NC demonstrates an excellent oxygen reduction reaction (ORR) ability with an electron-transfer number of 3.994, which is approximately equal to the ideal electron-transfer number 4.0. In an electrochemical measurement, CoSe2/NC presents excellent durability after 30,000 cycles linear sweep voltammetry (LSV) scan. When an anion (alkaline) exchange membrane fuel cell uses CoSe2/NC, superior performance is achieved in terms of the current generation. Moreover, a maximum power density of 146.3 mW cm−2 is obtained when a Fumapem® FAA-3 membrane is used.
The high catalytic performance of CoSe2/NC is due to two reasons—1) presence of selenocyanate (SeCN−) bonding in CoSe2/NC that promotes electron transfer and 2) presence of Co-N structures that act as active sites in an ORR. These characteristics of CoSe2/NC enhance the performance of the active sites and increase the kinetic reaction rate during the ORR, thus causing CoSe2/NC to be a promising catalyst.

中文摘要 Ⅰ Abstract Ⅱ 致謝 Ⅲ 目錄 Ⅴ 圖目錄 Ⅷ 表目錄 Ⅻ 第一章 緒論 1 1.1 人類對能源的反思與新思維 1 1.2 新綠色能源-燃料電池簡介 2 1.2.1燃料電池的種類 2 1.2.2鹼性陰離子交換膜燃料電池(AAEMFC)介紹 5 1.2.3燃料電池內部構造 6 1.2.4燃料電池極化現象 8 第二章 電化學原理與文獻探討 11 2.1 電化學原理 11 2.1.1氧化還原反應 11 2.1.2氧氣還原途徑 11 2.1.3氧氣還原反應機制 13 2.1.4氧氣還原反應之電化學催化 14 2.2 文獻探討 16 2.2.1氮摻雜多孔性碳材應用於陰極端之觸媒 16 2.2.2過渡金屬二硫屬元素作為非貴金屬觸媒 17 2.2.3二硒化鈷製備為非貴金屬觸媒 19 2.2.4研究動機 21 第三章 實驗步驟與方法 22 3.1 實驗規劃 22 3.2 實驗材料及藥品 23 3.3 實驗流程 24 3.4 實驗儀器與設備 25 3.5 實驗步驟 26 3.5.1陰極觸媒製備 26 3.5.2觸媒工作電極製備 27 3.6 儀器分析原理 28 3.6.1 X光繞射分析儀 28 3.6.2場發射掃描式電子顯微鏡 30 3.6.3 X光吸收光譜 30 3.6.4 X光光電子能譜儀 38 3.6.5傅立葉紅外線光譜儀 39 3.6.6電化學分析儀 41 3.6.7燃料電池測量儀 42 第四章 結果與討論 43 4.1 CoSe2觸媒材料 43 4.1.1 CoSe2之氧氣還原反應活性 44 4.1.2 CoSe2之X光繞射分析 45 4.1.3 CoSe2之SEM圖譜分析 46 4.2不同熱處理溫度之CoSe2/NC觸媒材料 48 4.2.1 不同熱處理溫度之CoSe2/NC觸媒之氧氣還原反應活性 48 4.2.2 不同熱處理溫度之CoSe2/NC 觸媒之X光繞射分析 50 4.2.3 不同熱處理溫度之CoSe2/NC 觸媒之SEM圖譜分析 52 4.2.4 不同熱處理溫度之CoSe2/NC 觸媒之X光吸收光譜分 53 4.2.5 不同熱處理溫度之CoSe2/NC 觸媒之X光光電子分析 61 4.2.6 不同熱處理溫度之CoSe2/NC觸媒之傅立葉紅外線光譜儀 分析 63 4.3不同比例之CoSe2/NC觸媒材料 65 4.3.1 不同比例之CoSe2/NC觸媒之氧氣還原反應活性 65 4.3.2 不同比例之CoSe2/NC觸媒之 X光繞射分析 67 4.3.3 不同比例之CoSe2/NC 觸媒之SEM圖譜分析 68 4.3.4 不同比例之CoSe2/NC觸媒之 X光吸收光譜分析 69 4.3.5 不同比例之CoSe2/NC 觸媒之X光光電子分析 76 4.3.6 不同比例之CoSe2/NC觸媒之傅立葉紅外線光譜儀分析 78 4.4 CoSe2/NC與商用樣品之比較 80 4.4.1 CoSe2/NC與商用樣品比較之氧氣還原反應活性 80 4.4.2 CoSe2/NC與商用樣品比較之X光繞射分析 83 4.4.3 CoSe2/NC與商用樣品比較之X光吸收光譜分析 84 4.4.4 CoSe2/NC與商用樣品比較之X光光電子分析 89 4.4.5 CoSe2/NC與商用樣品比較之傅立葉紅外線光譜儀分析 90 4.4.6 CoSe2/NC與商用樣品比較之穩定性測試 91 4.4.7 CoSe2/NC與商用樣品比較之鹼性陰離子交換膜燃料電池 測試 92 第五章 結論 96 參考文獻 98

[1] 衣寶廉編著, 黃朝榮、林修正修訂, 燃料電池-原理與應用, 五南圖書出版股份有限公司, DOI (2005).
[2] N.A. Abdel-Riheem, N.M. Rateb, A.A. Al-Atoom, A.O. Abdelhamid, 1,3,4-thia- and -selenadiazole and 1,2,4-triazolo[4,3-a]pyrimidine derivatives from hydrazonoyl halides, Heteroatom Chemistry, 14 (2003) 421-426.
[3] L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells – Fundamentals and Applications, Fuel Cells, 1 (2001) 5-39.
[4] K. Kinoshita, Electrochemical Oxygen Technology, New York: Jhon Wiley & Sons, DOI (1992) 37.
[5] L. Geniès, R. Faure, R. Durand, Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media, Electrochimica Acta, 44 (1998) 1317-1327.
[6] J.P. Hoare, The Electrochemistry of Oxygen, New York: John Wiley & Sons, DOI (1968) 26-91.
[7] N.M. Marković, P.N. Ross Jr, Surface science studies of model fuel cell electrocatalysts, Surface Science Reports, 45 (2002) 117-229.
[8] B.E. Conway, Comprehensive Treatise of Electrochemistry, New York: Kluwer Acadwmic Pub, DOI (1983) 26-91.
[9] L. Perini, C. Durante, M. Favaro, V. Perazzolo, S. Agnoli, O. Schneider, G. Granozzi, A. Gennaro, Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction, ACS Applied Materials and Interfaces, 7 (2015) 1170-1179.
[10] L. G. Bulusheva, E. O. Fedorovskaya1, A. V. Okotrub1, E. A. Maximovskiy, D. V. Vyalikh, Xiaohong Chen, and Huaihe Song, Electronic state of polyaniline deposited on carbon nanotube or ordered mesoporous carbon templates, Phys. Status Solidi B, DOI (2011) 2484-2487.
[11] J. Lee, S. Yoon, T. Hyeon, S. M. Oh, K. Bum Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors, Chemical Communications, DOI 10.1039/A906872D(1999) 2177-2178.
[12] L. Huang, C. Zhao, Y. Yao, Y. You, Z. Wang, C. Wu, Y. Sun, J. Tian, J. Liu, Z. Zou, Fe/N/C catalyst with high activity for oxygen reduction reaction derived from surfactant modified porous carbon-supported melamine-formaldehyde resin, International Journal of Hydrogen Energy, 41 (2016) 11090-11098.
[13] B. Kirubasankar, V. Murugadoss, S. Angaiah, Hydrothermal assisted: In situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors, RSC Advances, 7 (2017) 5853-5862.
[14] X. Chia, A.Y.S. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides, Chemical Reviews, 115 (2015) 11941-11966.
[15] H. Sun, L. Zhang, G. Zhou, Z.-S. Wang, CoSe Hollow Spheres with Dual Functions for Efficient Dye-Sensitized Solar Cells, Particle and Particle Systems Characterization, 33 (2016) 729-733.
[16] I.H. Kwak, H.S. Im, D.M. Jang, Y.W. Kim, K. Park, Y.R. Lim, E.H. Cha, J. Park, CoSe2 and NiSe2 Nanocrystals as Superior Bifunctional Catalysts for Electrochemical and Photoelectrochemical Water Splitting, ACS Applied Materials & Interfaces, 8 (2016) 5327-5334.
[17] X. Li, L. Zhang, M. Huang, S. Wang, X. Li, H. Zhu, Cobalt and nickel selenide nanowalls anchored on graphene as bifunctional electrocatalysts for overall water splitting, Journal of Materials Chemistry A, 4 (2016) 14789-14795.
[18] H. Li, D. Gao, X. Cheng, Simple microwave preparation of high activity Se-rich CoSe2/C for oxygen reduction reaction, Electrochimica Acta, 138 (2014) 232-239.
[19] S. Xin, Z. Liu, L. Ma, Y. Sun, C. Xiao, F. Li, Y. Du, Visualization of the electrocatalytic activity of three-dimensional MoSe2@reduced graphene oxide hybrid nanostructures for oxygen reduction reaction, Nano Research, 9 (2016) 3795-3811.
[20] K. Zhang, M. Park, L. Zhou, G.-H. Lee, W. Li, Y.-M. Kang, J. Chen, Urchin-Like CoSe2as a High-Performance Anode Material for Sodium-Ion Batteries, Advanced Functional Materials, 26 (2016) 6728-6735.
[21] Y. Feng, N. Alonso-Vante, Carbon-supported cubic CoSe2 catalysts for oxygen reduction reaction in alkaline medium, Electrochimica Acta, 72 (2012) 129-133.
[22] A. Lennert, M. Sternberg, K. Meyer, R.D. Costa, D.M. Guldi, Iodine-pseudohalogen ionic liquid-based electrolytes for quasi-solid-state dye-sensitized solar cells, ACS Applied Materials and Interfaces, 9 (2017) 33437-33445.
[23] J. Jia, J. Wu, J. Dong, P. Zhou, S. Wu, J. Lin, Cobalt selenide/tin selenide hybrid used as a high efficient counter electrode for dye-sensitized solar cells, Journal of Materials Science: Materials in Electronics, 26 (2015) 10102-10108.
[24] b. Renbing Wu, Yanhong Xue, Bo Liu, Kun Zhou, Jun Wei, Siew Hwa Chan, Cobalt diselenide nanoparticles embedded within porous carbon polyhedra as advanced electrocatalyst for oxygen reduction reaction, Journal of Power Sources, DOI (2016).
[25] L. Zhu, M. Teo, P.C. Wong, K.C. Wong, I. Narita, F. Ernst, K.A.R. Mitchell, S.A. Campbell, Synthesis, characterization of a CoSe2 catalyst for the oxygen reduction reaction, Applied Catalysis A: General, 386 (2010) 157-165.
[26] K.J. Datta, K.K.R. Datta, M.B. Gawande, V. Ranc, K. epe, V. Malgras, Y. Yamauchi, R.S. Varma, R. Zboril, Pd@Pt Core-Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction, Chemistry - A European Journal, 22 (2016) 1577-1581.
[27] B. Cormary, T. Li, N. Liakakos, L. Peres, P.-F. Fazzini, T. Blon, M. Respaud, A.J. Kropf, B. Chaudret, J.T. Miller, E.A. Mader, K. Soulantica, Concerted Growth and Ordering of Cobalt Nanorod Arrays as Revealed by Tandem in Situ SAXS-XAS Studies, Journal of the American Chemical Society, 138 (2016) 8422-8431.
[28] P.A. Bingham, A.J. Connelly, N.J. Cassingham, N.C. Hyatt, Oxidation state and local environment of selenium in alkali borosilicate glasses for radioactive waste immobilisation, Elsevier, 2011, pp. 2726-2734.
[29] K.H. Keita Ito, Kaoru Toko,Mao Ye,Akio Kimura,Yukiharu Takeda,Yuji Saitoh,Hiro Akinaga,Takashi Suemasu, X-ray magnetic circular dichroism of ferromagnetic Co4N epitaxial films on SrTiO3(001) substrates grown by molecular beam epitaxy, Applied Physics Letters, 99 (2011) 1-3.
[30] Y. Zhao, H. Yu, D. Yang, J. Li, Z. Shao, B. Yi, High-performance alkaline fuel cells using crosslinked composite anion exchange membrane, Journal of Power Sources, 221 (2013) 247-251.
[31] J. Escard, G. Mavel, J.E. Guerchais, R. Kergoat, X-ray photoelectron spectroscopy study of some metal(II) halide and pseudohalide complexes, Inorganic Chemistry, 13 (1974) 695-701.
[32] Y.-F. Lin, C.-T. Li, C.-P. Lee, Y.-A. Leu, Y. Ezhumalai, R. Vittal, M.-C. Chen, J.-J. Lin, K.-C. Ho, Multifunctional Iodide-Free Polymeric Ionic Liquid for Quasi-Solid-State Dye-Sensitized Solar Cells with a High Open-Circuit Voltage, ACS Applied Materials and Interfaces, 8 (2016) 15267-15278.
[33] F.A. Cotton, D.M.L. Goodgame, M. Goodgame, T.E. Haas, Selenocyanate Complexes of Cobalt(II), Inorganic Chemistry, 1 (1962) 565-572.
[34] A. Solangi, A.M. Bond, I. Burgar, A.F. Hollenkamp, M.D. Horne, T. Ruther, C. Zhao, Comparison of diffusivity data derived from electrochemical and NMR investigations of the SeCN-/(SeCN)2/(SeCN) 3- system in ionic liquids, Journal of Physical Chemistry B, 115 (2011) 6843-6852.
[35] S.L. Jing Pan, Yan Li, Aibin Huang, Lin Zhuang,Juntao Lu, High-Performance Alkaline Polymer Electrolyte for Fuel Cell Applications, Advanced Functional Materials, 20 (2010) 312-319.
[36] C.G. Arges, S. Kulkarni, A. Baranek, K.-J. Pan, M.-S. Jung, D. Patton, K.A. Mauritz, V. Ramani, Quarternary Ammonium and Phosphonium Based Anion Exchange Membranes for Alkaline Fuel Cells, ECS Transactions, 33 (2010) 1903-1913.
[37] J.W.D. Ng, Y. Gorlin, D. Nordlund, T.F. Jaramillo, Nanostructured manganese oxide supported onto particulate glassy carbon as an active and stable oxygen reduction catalyst in alkaline-based fuel cells, Journal of the Electrochemical Society, 161 (2014) D3105-D3112.
[38] T. Palaniselvam, M.O. Valappil, R. Illathvalappil, S. Kurungot, Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping, Energy and Environmental Science, 7 (2014) 1059-1067.
[39] C.-H. Wang, C.-W. Yang, Y.-C. Lin, S.-T. Chang, S.L.Y. Chang, Cobalt-iron(II,III) oxide hybrid catalysis with enhanced catalytic activities for oxygen reduction in anion exchange membrane fuel cell, Journal of Power Sources, 277 (2015) 147-154.
[40] A. Arunchander, M. Vivekanantha, S.G. Peera, A.K. Sahu, MnO-nitrogen doped graphene as a durable non-precious hybrid catalyst for the oxygen reduction reaction in anion exchange membrane fuel cells, RSC Advances, 6 (2016) 95590-95600.
[41] A. Arunchander, S.G. Peera, A.K. Sahu, Synthesis of flower-like molybdenum sulfide/graphene hybrid as an efficient oxygen reduction electrocatalyst for anion exchange membrane fuel cells, Journal of Power Sources, 353 (2017) 104-114.

無法下載圖示 全文公開日期 2024/01/15 (校內網路)
全文公開日期 2029/01/15 (校外網路)
全文公開日期 2029/01/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE