簡易檢索 / 詳目顯示

研究生: 鍾芸
Yun Jhong
論文名稱: Fe-10 Mn-9 Al與Fe-25 Mn-9 Al 合金鋼之spinodal相分離研究
The Study of Spinodal Decompositions in Fe-10 Mn-9 Al and Fe-25 Mn-9 Al Steels
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 96
中文關鍵詞: 鐵錳鋁合金鋼spinodal相分離有序化反應魏德曼組織D03L12
外文關鍵詞: Fe-Mn-Al alloy, sinodal decomposition, ordering transformation, Widmanstätten structure, D03, L12
相關次數: 點閱:183下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鐵錳鋁合金鋼具有取代鉻系不鏽鋼的潛力,被稱為窮人的不鏽鋼,而錳鋁鋼相變化的研究則是提供發展鐵錳鋁不鏽鋼的重要基礎。本論文為研究合金成份Fe-10 Mn-9 Al-0.16 C (合金A)與Fe-25 Mn-9 Al-0.13C (合金B)經1300℃與1200℃高溫處理後空冷與水冷及恆溫處理後之相變化。於高溫處理後空冷,合金A與B皆可觀察到肥粒體基地還有魏德曼組織在晶界生成;若以水淬的方式冷卻,則可以觀察到肥粒體晶粒內有麻田散體相。對高溫空冷的試片做穿透式電子顯微鏡分析,魏德曼組織中只有在合金B發現L12析出;而在肥粒體基地中,合金A與合金B皆有D03析出。在高溫空冷的過程中先發生spinodal相分離再經有序化反應後可觀察到L12與D03析出物析出,並藉由STEM的面掃描推測,應有鋁元素有序化反應後的叢聚現象。合金A經1100℃固溶處理後,再於900℃至500℃以100℃為區間持溫熱處理100小時後皆為肥粒體與沃斯田體組成之雙相結構,β-Mn 相存在的溫度範圍,介於800℃至500℃之間,α- Mn 相存在的溫度範圍介於600℃至500℃之間。


Fe-Mn-Al alloy steel has the potential to replace chromium-based stainless steels and is known as the poor man's stainless steel. The study of phase transformations is the basis for the development of Fe-Mn-Al stainless steel. This studies the alloy Fe-10 Mn-9 Al-0.16 C (alloy A) and Fe-25 Mn-9 Al-0.13C (alloy B) after high temperature treatment at 1300℃ and 1200℃, air cooling, water quenched and constant temperature treatment phase transformations. After high temperature treatment and air cooling, alloy A and both can be observed that the ferrite and Widmanstätten structure at the grain boundary; if water quenched, martensite is observed in the martrix. The TEM analysis of the high temperature air-cooled test piece showed that L12 precipitation was only found in the Widmanstätten structure of alloy B; both alloy A and alloy B had D03 precipitated in the martrix. In the process of high temperature air cooling, the spinodal phase transformation occurs first, and then ordering reaction, L12 and D03 precipitates can be observed. Based on the surface scanning of STEM, it is inferred that there should be rich region after the ordering reaction of aluminum. Alloy A is solution treatment at 1100°C, and then heated at 900°C to 500°C at 100°C for 100 hours. It is a two-phase structure composed of ferrite and austenitic. The temperature range of the β-Mn phase is between 800°C and 500°C, and the temperature range where the α-Mn phase exists is between 600°C and 500°C.

摘 要 I Abstract II 致 謝 III 目 錄 V 表目錄 VII 圖目錄 VIII 第一章 前 言 13 第二章 文獻回顧 15 2.1 擴散型相變化 15 2.1.1 有序化相變化 15 2.1.2 析出型相變化 16 2.1.3 spinodal相變化 16 2.2 非擴散型相變化 18 2.3 鐵錳鋁合金生成相之相變化研究 18 2.3.1 魏德曼組織 19 2.3.2 L12相的析出 19 2.3.3 D03相的析出 20 2.3.4 鐵錳鋁合金之18R麻田散體相變化 21 2.3.5 α錳………………………………………………………...22 2.3.6 β錳…………………………………………………………22 第三章 實驗方法 33 3.1 實驗方法 33 3.2 合金冶煉 33 3.3 鑄錠加工 34 3.4 熱處理 35 3.4.1 高溫處理 35 3.4.2 恆溫處理 35 3.5 試片製作流程 36 3.5.1 光學顯微鏡試片 36 3.5.2 掃描式電子顯微鏡試片 37 3.5.4 X光繞射儀試片 38 3.5.5 穿透式電子顯微鏡試片 38 3.6 分析儀器 39 3.6.1 金相與光學顯微鏡 39 3.6.2 X光繞射儀 40 3.6.3 高解析度場發射掃描式電子顯微鏡 41 3.6.4 穿透式電子顯微鏡 41 第四章 結果與討論 48 4.1 高溫處理後空冷 48 4.2 高溫處理後水淬 52 4.3不同熱處理之基地相變化分析 54 4.4 恆溫處理之相變化分析 55 第五章 結 論 87 參考文獻 89

[1] X.J. Liu, S.M. Hao, L.Y. Xu, Y.F. Guo and H. Chen, Experimental study of the phase equilibria in the Fe-Mn-Al system, 1996, 27(9), 2429-2435.
[2] Z.Q. Wu, H. Ding, X.H. An, D. Han, and X.Z. Liao, Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content, 2015, 639, 189-191.
[3] J.G. Duh, and C.J. Wang, Formation and growth morphology of oxidation-induced ferrite layer in Fe-Mn-Al-Cr-C alloys, 1990, 25, 2063-70.
[4] 李文彬,雙相鐵錳鋁碳合金麻田散鐵相變化研究,國立清華大學材料科學(工程)研究所,博士論文,1994。
[5] S.K. Chen, K.H. Hwang, C.M. Wan and J.G. Byrne, The formation of needles in Fe-Mn-Al-C duplex austenitic/ferritic alloys, 1990, 24(1), 151-156.
[6] W.S. Yang, T.B. Wu and C.M. Wan, Structure determination of the needle like precipitates in an alloy of Fe-29Mn-8Al-0.06C, 1990, 24(5), 895-900.
[7] K.H. Hwang, C.M. Wan and J.G. Byrne, The massive and martensitic transformations in a carbon-free Fe-Mn-Al alloy, 1990, 24(6), 979-984.
[8] 徐享欽,鐵-6 錳8- 鋁 低碳合金之相變化研究,國立台灣科技大學,碩士論文 2004。
[9] H.Y. Chu, F.R. Chen, T.B. Wu, Structural evolution of the aging of martensite in duplex Fe-Mn-Al-C alloy, 1995, 33(8), 1269-1275.
[10] 林中天,經高溫冷卻雙相鐵錳鋁合金鋼內肥粒體與沃斯田體發生spinodal相分離的研究,國立台灣科技大學機械工程系,碩士論文,2017。
[11] D.A. Porter and K.E. Easterling, Phase Transformations in Metals and alloys, 3rd ed., 2008.
[12] D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2/e, 2001.
[13] W.A. Soffa and D.E. Laughlin, High-strength age hardening copper-titanium alloys: redivivus, 2004, 49(3-4), 347-366.
[14] A.K. Jena and M.C. Chaturvedi, Phase Transformations in Materials, Prentice Hall, NJ,1992.
[15] W.K. Choo, J.H. Kim and J.C. Yoon, Microstructural change in austenitic Fe- 30.0wt.%Mn- 7.8wt.%Al- 1.3wt.%C initiated by spinodal decomposition and its influence on mechanical properties, 1997, 45(12), 4877-4885.
[16] C.H. Chao and N.J. Ho, On the interpretation of the crystal structure of the 18R martensite in duplex Fe Mn Al C alloys, 26(12), 1863-1868.
[17] W.B. Lee, F.R. Chen, S.K. Chen, G.B. Olson and C.M. Wan1, Transmission electron microscopy studies of the crystallography of B.C.C./18R martensite in Fe Mn Al C, 1995, 43(1), 21-30.
[18] 陳柏邨,鐵錳鋁合金的體心立方雙晶之研究,國立台灣科技大學,碩士論文,2006。
[19] W.C. Cheng, Formation of a new phase after high-temperature annealing and air cooling of an Fe-Mn-Al alloy, 2005, 36, 1737-1743.
[20] C.J. Sung, W.C. Cheng, A study of spinodal decomposition and ordering reaction in Al0.5CoCrFeNi2 high entropy alloys, 2018, M.S. Thesis, National Taiwan University of Science and Technology..
[21] I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee and S. Guo, N. Tsuji, Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing, 2016, 675, 99-109.
[22] 黃志偉,魏德曼組織發生spinodal 相分離與有序化相變化的研究,國立台灣科技大學,碩士論文 2017。
[23] J.W. Lee, C.C. Wub and T.F. Liu, The influence of Cr alloying on microstructures of Fe–Al–Mn–Cr alloys, 2004, 50(11), 1389-1393.
[24] W.C. Cheng, H.Y. Lin and C.F. Liu, Observing the massive transformation in an Fe–Mn–Al alloy, 2022, 335(1-2), 82-88.
[25] K.H. Hwang, W.S. Yang, T.B. Wu, C.M. Wan and J.G. Byrne1, Long-period stacking-fault structure of the needle-like phase in a duplex Fe Mn Al C alloy, 1991, 39(5), 825-831.
[26] W.S. Yang, K.H. Wang, T.B. Wu, J.G.Byrne and C.M. Wan, Carbon-induced nucleation (CIN) mechanism of the needle-like phase in duplex Fe-Mn-Al-C alloys, 1990, 24(7), 1221-1224.
[27] H.I. Aaronson, C. Laird, and K.R. Kinsman, Phase Transformation, 1970.
[28] T.F. Liu and J.C. Tasy, Morphology of A12 α-Mn structure, 1987, 21(9), 1213-1218.
[29] Y.C. Lin, Investigation of superparamagnetic fine particles of ordered (B2+D03) structure and ordered B2 structure with monoclinic α′-Mn, 2000, 77(1), 40-49.
[30] H. Wang, F. Su and Z. Wen, First-principles calculation of the effect of Mn element on the solid solubility of C in α-Fe, 2021, 26, 101832.
[31] Y.L. Lin and C.P. Chou, D03 - B2 - α phase transition in an Fe-Mn-Al-C weldment, 1993, 28(10), 1261-1266.
[32] D. J. Schmatz, Formation of beta manganese-type structure in iron-aluminum-manganese alloys, 1959, 215(1), 112-114.
[33] X.P. Chen, Y.P. Xu, P. Ren, W.J. Li, W.Q. Cao, and Q. Liu, (2017). Aging hardening response and β-Mn transformation behavior of high carbon high manganese austenitic low-density Fe-30Mn-10Al-2C steel. Materials Science and Engineering: A, 703, 167-172.
[34] D.M. Schwartz and B. Ralph, A field-ion study of carbide particle coarsening in an alloy steel, 1969, 19(8), 1069-1074.
[35] D.M. Schwartz and B. Ralph, The Early Stages of Growth of Second-Phase Particles in an Fe–Ti–Si Alloy, 1969, 3(1), 216-219.
[36] H.I. Aaronson, The Decomposition of Austenite by Diffusion Processes, 1962.
[37] R.B. Nicholson and R.C. Gifkins, Grain-boundary sliding and its accommodation during creep and superplasticity, 1976, 7(8), 1225-1232.
[38] J.W. Martin, and R.D. Doherty, Stability of Microstructure in Metallic Systems, 1997.
[39] D. Everett, Grimley, M. James and L. Beau, Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, 2019, 317-340.
[40] M. Wang, Y. Cliu, D. Flahaut, I.P. Jones and Z. Zhang, Secondary phase area fraction determination using SEM-EDS quantitative mapping, 2020, 167, 110506.
[41] K.H. Wang, W.S. Yang, T.B. Wu, C.M. Wan, J.G. Byrne, Long-period stacking-fault structure of the needle-like phase in a duplex Fe-Mn-Al-C alloy, 1991, 39(5), 825-831.
[42] 陳冠甫,以方位影像顯微學分析鐵錳鋁合金的肥粒麻田散體、淬火雙晶與魏德曼組織, 國立台灣科技大學,碩士論文 2014。
[43] W.C. Cheng, C.Y. Cheng, C.W. Hsu and D.E. Laughlin, Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe-C-Mn-Al austenitic steel, 2015, 642, 128-135.
[44] 林堡楓,鐵-20 錳-7.7 鋁-0.3 碳雙相錳鋁鋼內18R 麻田散體相變化的研究,國立台灣科技大學,碩士論文 2017。
[45] W.C. Cheng, C.F. Yi and F. Lai, Observing the D03 phase in Fe-Mn-Al alloys, 2002, 337(1-20), 281-286.

無法下載圖示 全文公開日期 2024/09/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE