簡易檢索 / 詳目顯示

研究生: 劉少淵
Shao-Yuan Liu
論文名稱: 利用基因工程大腸桿菌大量生產生物聚醯胺原料
Massive production of bio-polyamide precursors in genetic engineered Escherichia coli
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 李振綱
王勝仕
謝元榜
蔡伸隆
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 82
中文關鍵詞: 大腸桿菌生物基聚醯胺原料賴氨酸脫羧酶表面展示全細胞催化劑
外文關鍵詞: Escherichia coli, bio-based polyamide raw materials, lysine decarboxylase, surface display, whole-cell catalyst
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

聚醯胺是一種常見的高分子材料,其可以用於紡織品、食物包裝、眼鏡零件、輪胎及防護裝備等用品的生產,這使得人們對聚醯胺的需求逐年上升。聚醯胺的原料可以透過化學法或生物法製造,化學合成需要在高溫、高壓的環境下與觸媒、金屬鹽類和有機溶劑反應,使得聚醯胺的製造過程必須消耗大量能源造成生產成本提高,而生物合成能夠在相對溫和的條件下進行,是對環境較為友善的製程。
本研究利用基因工程技術,以Escherichia coli作為全細胞生物催化劑生產聚醯胺原料:戊二胺以及5-胺基戊酸。將帶有賴氨酸脫羧酶(cadA)基因的質體轉入到宿主細胞Escherichia coli中表達,並利用pelB信號肽融合賴氨酸/戊二胺逆向轉運蛋白(cadB),提高賴氨酸進入細胞及戊二胺排出胞外的速率。我們也將賴氨酸脫羧酶(cadA)基因與冰核蛋白(Ice-nucleation protein, INP)融合,使得大腸桿菌能在細胞膜上表達賴氨酸脫羧酶以提高菌株生產戊二胺的產率。為了生產5-胺基戊酸,我們將來自惡臭假單胞菌的賴氨酸2-單加氧酶(DavB)和 5-氨基戊醯胺水解酶 (DavA)基因轉至大腸桿菌中表達。
我們測試帶有pET24a-ptrc-cadA-ptac-pelB-cadB質體的菌株在24小時之內轉化反應溶液中87.5%的賴氨酸;同時帶有pCTCO33-INP-cadA與pET24a-ptrc-cadA質體的菌株在24小時之內轉化反應溶液中92.7%的賴氨酸,未來需要調整INP-cadA蛋白的誘導溫度以提升其轉位效率。
我們成功將賴氨酸2-單加氧酶(DavB)和 5-氨基戊醯胺水解酶 (DavA)基因轉至大腸桿菌中,並且從SDS-PAGE確認兩種基因能夠同時表達。但我們目前仍無法在HPLC上將5-胺基戊酸與賴氨酸分離,未來需要調整分離條件如流動相或更換管柱。


Nylon is a common polymer that can be used in the production of textiles, food packaging, eyewear components, tires, and protective equipment, among other products. This has led to a growing demand for nylon over the years. The raw materials for nylon can be manufactured through either chemical or biological methods. Chemical synthesis involves reactions with catalysts, inorganic salts, and organic solvents in high-temperature and high-pressure environments. This process consumes a significant amount of energy, resulting in increased production costs. On the other hand, bio-synthesis can take place under relatively mild conditions, making it a more environmentally friendly process.
This study utilizes genetic engineering techniques with Escherichia coli as a whole-cell biocatalyst for the production of nylon precursors: 1,5-diaminopentane and 5-aminovaleric acid. Plasmids containing the lysine decarboxylase (cadA) gene were introduced into the host cells of Escherichia coli for expression. The pelB signal peptide was fused with lysine/ 1,5-diaminopentane antiporter (cadB) to enhance the rate of lysine uptake into the cells and 1,5-diaminopentane export out of the cells. Additionally, we fused the lysine decarboxylase (cadA) gene with the ice-nucleation protein (INP) to enable the expression of lysine decarboxylase on the cell membrane of Escherichia coli, thereby increasing the yield of 1,5-diaminopentane production by the bacterial strain. To produce 5-aminovaleric acid, we expressed the lysine 2-monooxygenase (DavB) and 5-aminovaleramidase (DavA) genes from Pseudomonas putida in Escherichia coli.
We tested strains carrying the plasmid pET24a-ptrc-cadA-ptac-pelB-cadB, and within 24 hours, they transformed 87.5% of lysine in the reaction solution. Simultaneously, strains carrying both pCTCO33-INP-cadA and pET24a-ptrc-cadA plasmids transformed 92.9% of lysine in the reaction solution within 24 hours. In the future, it will be necessary to adjust the induction temperature of the INP-cadA protein to enhance its translocation efficiency.
We successfully transferred the genes for lysine 2-monooxygenase (DavB) and 5-aminovaleramidase (DavA) into Escherichia coli, and confirmed through SDS-PAGE that both genes can be expressed simultaneously. However, we are currently unable to separate 5-aminovaleric acid from lysine on HPLC. In the future, adjustments to separation conditions such as mobile phase or column replacement will be necessary.

摘要 III Abstract IV 致謝 VI 目錄 VII 圖目錄 X 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究方法 3 第二章 文獻回顧 6 2.1 以生物合成法發酵戊二胺 6 2.1.1 大腸桿菌合成戊二胺及其代謝途徑 6 2.1.2 全細胞轉化法 9 2.1.3 冰核蛋白(Ice-nucleation protein, INP) 11 2.2 以生物合成法發酵5-胺基戊酸 12 2.3 大腸桿菌TG1(Escherichia coli TG1) 13 2.4 大腸桿菌染色體基因刪除 14 2.4.1 Lambda Red Mediated Recombineering重組反應 14 2.4.2 FLP-FRT重組反應 15 第三章 實驗方法 16 3.1 菌種與質體 16 3.2 實驗材料與儀器 16 3.3 實驗方法 18 3.3.1 plasmid DNA mini-prep(鹼性融裂法) 18 3.3.2 plasmid DNA mini-prep(Tools Plasmid Mini Kit) 19 3.3.3 聚合酶鏈鎖反應(polymerase chain reaction) 19 3.3.4 瓊脂糖凝膠電泳分析 22 3.3.5 DNA 瓊脂糖凝膠回收(DNA recovery) 22 3.3.6 限制酶酶切反應與接合反應(DNA digestion and ligation) 23 3.3.7 大腸桿菌勝任細胞製備(Ultra competent cell) 24 3.3.8 大腸桿菌轉型作用(transformation) 25 3.3.9 大腸桿菌電脈衝穿孔勝任細胞(electrocompetent cell)製備 25 3.3.10 大腸桿菌電脈衝穿孔術 26 3.3.11 大腸桿菌基因刪除(E.coli gene deletion) 26 3.3.12 抗生素標記移除(removal of the selection marker by FLPe expression) 27 3.3.13 SDS-PAGE 28 3.3.14 免疫螢光蛋白分析 30 3.3.15 戊二胺發酵測試 30 3.3.16 5-胺基戊酸發酵測試 32 3.3.17 HPLC分析發酵液中戊二胺、5-胺基戊酸以及L-賴氨酸濃度 33 第四章 實驗結果 34 4.1 質體建構 34 4.1.1 pET24a-ptrc-cadA 34 4.1.2 pET24a-ptac-pelB-cadB(T7 tag removed) 36 4.1.3 pET24a-ptrc-cadA-ptac-pelB-cadB 38 4.1.4 pCTCO33-INP-cadA-6H 41 4.1.5 pET24a-davA 43 4.1.6 pET24a-davB 45 4.1.7 pET24a-davAB 47 4.2 大腸桿菌基因刪除 49 4.2.1 Gamma-glutamylputrescine synthetase(puuA)刪除 49 4.2.2 Putrescine aminotransferase (ygjG)刪除 49 4.3 賴氨酸脫羧酶(cadA)在大腸桿菌BL21之表達測試 51 4.3.1 賴氨酸脫羧酶(cadA)表達結果 51 4.3.2 冰核蛋白-賴氨酸脫羧酶(INP-cadA)表達結果 52 4.4 賴氨酸脫羧酶(cadA)在大腸桿菌BL21胞內之活性測試 54 4.4.1 戊二胺HPLC檢量線 54 4.4.2 以大腸桿菌BL21同時過表達賴氨酸脫羧酶(cadA)與賴氨酸-戊二胺反向轉運蛋白(cadB)之活性測試 55 4.4.3 以大腸桿菌BL21表達冰核蛋白-賴氨酸脫羧酶(INP-cadA)之活性測試 57 4.4.4 添加磷酸吡哆醛(Pyridoxal phosphate;PLP)對於賴氨酸脫羧酶(cadA)活性影響 59 4.5 賴氨酸2-單加氧酶(DavB)與5-氨基戊醯胺水解酶 (DavA)之表達測試 62 第五章 結論與未來展望 63 參考文獻 64 附錄 67

1.Huang, C.-Y.; Ting, W.-W.; Chen, Y.-C.; Wu, P.-Y.; Dong, C.-D.; Huang, S.-F.; Lin, H.-Y.; Li, S.-F.; Ng, I.-S.; Chang, J.-S. Facilitating the enzymatic conversion of lysineto cadaverine in engineered Escherichia coli with metabolic regulation by genes deletion. Biochemical Engineering Journal 2020, 156, 107514.
2. Qian, Z. G.; Xia, X. X.; Lee, S. Y. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnology and bioengineering 2011, 108 (1), 93-103.
3. Leong, Y. K.; Chen, C.-H.; Huang, S.-F.; Lin, H.-Y.; Li, S.-F.; Ng, I. S.; Chang, J.-S. High-level l-lysine bioconversion into cadaverine with enhanced productivity using engineered Escherichia coli whole-cell biocatalyst. Biochemical Engineering Journal 2020, 157. DOI: 10.1016/j.bej.2020.107547.
4. Kim, H. T.; Baritugo, K.-A.; Oh, Y. H.; Hyun, S. M.; Khang, T. U.; Kang, K. H.; Jung, S. H.; Song, B. K.; Park, K.; Kim, I.-K. Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopolyamide 510. ACS Sustainable Chemistry & Engineering 2018, 6 (4), 5296-5305.
5. Tomar, P. C.; Lakra, N.; Mishra, S. N. Cadaverine: a lysine catabolite involved in plant growth and development. Plant Signal Behav 2013, 8 (10), doi: 10 4161/psb 25850. DOI: 10.4161/psb.25850 From NLM Medline.
6. Kikuchi, Y.; Kojima, H.; Tanaka, T.; Takatsuka, Y.; Kamio, Y. Characterization of a second lysine decarboxylase isolated from Escherichia coli. Journal of bacteriology 1997, 179 (14), 4486-4492.
7. Sabo, D. L.; Fischer, E. H. Chemical properties of Escherichia coli lysine decarboxylase including a segment of its pyridoxal 5'-phosphate binding site. Biochemistry 1974, 13 (4), 670-676.
8. Li, N.; Chou, H.; Yu, L.; Xu, Y. Cadaverine production by heterologous expression of Klebsiella oxytoca lysine decarboxylase. Biotechnology and bioprocess engineering 2014, 19 (6), 965-972.
9. Lemonnier, M.; Lane, D. Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology 1998, 144 (3), 751-760.
10. Yamamoto, Y.; Miwa, Y.; Miyoshi, K.; Furuyama, J.-i.; Ohmori, H. The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme. Genes & genetic systems 1997, 72 (3), 167-172.
11. Chen, R. R. Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Applied microbiology and biotechnology 2007, 74 (4), 730-738.
12. Soksawatmaekhin, W.; Uemura, T.; Fukiwake, N.; Kashiwagi, K.; Igarashi, K. Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB. Journal of Biological Chemistry 2006, 281 (39), 29213-29220. Meng, S.-Y.; Bennett, G. Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. Journal of bacteriology 1992, 174 (8), 2659-2669.
13. Brameyer, S.; Rösch, T. C.; El Andari, J.; Hoyer, E.; Schwarz, J.; Graumann, P. L.; Jung, K. DNA-binding directs the localization of a membrane-integrated receptor of the ToxR family. Communications Biology 2019, 2 (1), 4. DOI: 10.1038/s42003-018-0248-7.
14. Ishige, T.; Honda, K.; Shimizu, S. Whole organism biocatalysis. Current opinion in chemical biology 2005, 9 (2), 174-180.
15. Ma, W.; Cao, W.; Zhang, H.; Chen, K.; Li, Y.; Ouyang, P. Enhanced cadaverine production from L-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB. Biotechnol Lett 2015, 37 (4), 799-806. DOI: 10.1007/s10529-014-1753-5 From NLM Medline.
16. Lei, S.-P.; Lin, H.; Wang, S.-S.; Callaway, J.; Wilcox, G. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. Journal of bacteriology 1987, 169 (9), 4379-4383.
17. Wolber, P. K. Bacterial ice nucleation. Advances in microbial physiology 1993, 34, 203-237.
18. Sarhan, M. Ice nucleation protein as a bacterial surface display protein. Archives of Biological Sciences 2011, 63 (4), 943-948. DOI: 10.2298/abs1104943s.
19. Wu, M. L.; Tsai, C. Y.; Chen, T. H. Cell surface display of Chi92 on Escherichia coli using ice nucleation protein for improved catalytic and antifungal activity. FEMS Microbiology Letters 2006, 256 (1), 119-125. DOI: 10.1111/j.1574-6968.2006.00115.x (acccessed 11/15/2023).
20. Su, F.-H.; Tabañag, I. D. F.; Wu, C.-Y.; Tsai, S.-L. Decorating outer membrane vesicles with organophosphorus hydrolase and cellulose binding domain for organophosphate pesticide degradation. Chemical Engineering Journal 2017, 308, 1-7. DOI: https://doi.org/10.1016/j.cej.2016.09.045.
21. Wang, X.; Cai, P.; Chen, K.; Ouyang, P. Efficient production of 5-aminovalerate from L-lysine by engineered Escherichia coli whole-cell biocatalysts. Journal of Molecular Catalysis B: Enzymatic 2016, 134, 115-121.
22. Li, Z.; Xu, J.; Jiang, T.; Ge, Y.; Liu, P.; Zhang, M.; Su, Z.; Gao, C.; Ma, C.; Xu, P. Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli. Scientific Reports 2016, 6 (1), 30884. DOI: 10.1038/srep30884.
23. Rogers, K.; Kadner, R. Facts about E. coli: Dimensions, as Discussed in Bacteria: Diversity of Structure of Bacteria. Encyclopedia Britannica Online.
24. Tortora, G. J.; Funke, B. R.; Case, C. L. Microbiology: an introduction; Pearson Benjamin Cummings San Francisco, CA, 2007.
25. Murphy, K. C. λ Recombination and Recombineering. EcoSal Plus 2016, 7 (1).
26. Guzman, L.-M.; Belin, D.; Carson, M. J.; Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. Journal of bacteriology 1995, 177 (14), 4121-4130.
27. Schleif, R. DNA looping. Annual review of biochemistry 1992, 61 (1), 199-223.
28. Caldwell, B. J.; Bell, C. E. Structure and mechanism of the Red recombination system of bacteriophage λ. Progress in biophysics and molecular biology 2019, 147, 33-46.
29. Zhu, X.-D.; Sadowski, P. D. Cleavage-dependent Ligation by the FLP Recombinase: Characterization of a mutant FLP protein with an alteration in a catalytic amino acid. Journal of Biological Chemistry 1995, 270 (39), 23044-23054.
30. Ma, W.; Cao, W.; Zhang, B.; Chen, K.; Liu, Q.; Li, Y.; Ouyang, P. Engineering a pyridoxal 5’-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis. Scientific Reports 2015, 5 (1), 15630. DOI: 10.1038/srep15630

無法下載圖示 全文公開日期 2034/01/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE