簡易檢索 / 詳目顯示

研究生: 藍英連
Ying-Lien Lan
論文名稱: 研究振幅相位預扭與間接學習架構下結合有無記憶多項式預扭之正交分頻多工及正交振幅調變系統
Analysis of Amplitude-Phase Predistortion and Memory and Memoryless Polynomial Predistortion based on Indirect learning architecture in OFDM and QAM systems
指導教授: 張立中
Li-Chung Chang
口試委員: 劉馨勤
Hsin-Chin Liu
曾德峰
Der-Feng Tseng
曾恕銘
Shu-Ming Tseng
陳永芳
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 97
中文關鍵詞: 功率放大器正交振幅調變正交分頻多工預扭器
外文關鍵詞: power amplifier, QAM, OFDM, predistorter
相關次數: 點閱:272下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交分頻多工系統具有高的頻寬效率,且能夠對抗多重路徑衰減干擾的優
    點;其主要的缺點為高的峰值對平均功率比問題。由於高的峰對平均功率比,使
    得經過高功率放大器的信號,受到放大器操作點的影響而被截掉,引起失真。最
    簡單消除的方法,是降低傳送到放大器信號的強度,使得放大器的操作點落在線
    性區;但此作法會造成功率效益過低,不是合理解決方法。數位基頻預扭是既可
    維持高功率效益且能夠有效線性化放大器。功率放大器是通訊系統裡一個重要元
    件,本身固有的非線性性質。當一非常數信號經過非線性放大器時,其輸出會有
    頻譜再生的現象,而造成鄰近通道的干擾。因此,線性化功率放大器降低位元錯
    誤率的同時,也必須能夠抑制頻譜再生。
    在本篇論文中,我們將分析在正交分頻多工與正交振幅調變系統下,使用預
    扭器來補償由高功率放大器所引起的非線性失真,使之線性化。我們將使用到振
    幅-相位預扭器補償無記憶的功率放大器;及以間接學習架構結合多項式模組,
    藉由最小平方(LS)演算法求得預扭器的多項式係數,達到線性化的功率放大器。
    最後,比較數種預扭器與功率放大器組合的效能。


    The orthogonal frequency division multiplex (OFDM) system has advantages of
    high bandwidth efficiency, and is able to resist the multipath fading interference; its major disadvantage is high peak to average power ratio (PAPR). The signal through power amplifier is clipped due to the operation point of power amplifier. This clipped signal results in distortion. The easiest method of counteracting the distortion is to reduce the intensity of the signal which enters power amplifier. This makes the operation point of power amplifier drop to linear region. It is not a reasonable solution because this method will reduce bandwidth efficiency largely. Digital baseband predistorter can not only maintain the high bandwidth efficiency but also
    make predistorter cascaded with power amplifier be efficient linearization. Power amplifier which is intrinsic nonlinear characteristic is a important component in communication systems. When a non-constant signal is go through nonlinear power amplifier, its output signal has spectrum regrowth phenomenon, which gives rise to adjacent channel interference. Therefore, the linearization of power amplifier reduces bit error rate; at the same time, it also has to suppress spectrum regrowth. In this thesis, we will analyze the use of predistorter to compensate the nonlinear distortion caused by power amplifier in OFDM and QAM system. We will use amplitude-phase predistorter to compensate the memoryless power amplifier. We also use indirect learning architecture combined with polynomial-based model, which uses least-squares algorithm to obtain polynomial coefficients of predistorter, to achieve linearized power amplifier. Finally, we compare the performance which different
    predistorters combined with different power amplifier.

    摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II Contents . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . IV Lists of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . .V Lists of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . .VI Chapter I INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Difference between linear and nonlinear system . . . . . . . . . . 1 1.2 Memoryless system and system with memory . . . . . . . . . . . . . 2 1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Chapter II POWER AMPLIFIER . . . . . . . . . . . . . . . . . . . . . 4 2.1 Power amplifier model without memory. . . . . . . . . . . . . . . . 9 2.1.1 TWT . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .9 2.1.2 SSPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 Memoryless polynomial model . . . . . . . . . . . . . . . . . . . 10 2.2 Power amplifier model with memory . . . . . . . . . .. . . . . . . 14 2.2.1 Volterra series . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Wiener model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Hammerstein model . . . . . . . . . . . . . . . . . . . . . . . . .16 2.2.4 Wiener-Hammerstein model. . . . . . . . . . . . . . . . . . . . . 16 2.2.5 Parallel Wiener model. . . . . . . . . . . . . . . . . . . . . . .17 2.2.6 Parallel Hammerstein model. . . . . . . . . . . . . . . . . . . . .18 2.2.7 Discussion about special phenomenon of power amplifier . . .. . . 20 Chapter III PREDISTORTER. . . . . . . . . . . . . . . . . . . . . . .24 3.1 Amplitude and phase predistorter . . . . . . . . . . . . . . . . 26 3.2 Memory and memoryless predistorter combined with indirect learning architecture. . . . . . . . . . . . . . . . . . . . . .31 Chapter IV PRINCIPLE OF OFDM SYSTEM. . . . . . . . . . . . . . . . 34 4.1 OFDM system . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Effects of the nonlinear amplifier . . . . . . . . . . . . . . . 41 4.3 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . .41 4.3.1 System model I (QAM system). . . . . . . . . . . . . . . . . . . .42 4.3.2 System model II (QAM system). . . . . . . . . . . . . . . . . . . .44 4.3.3 System model III (OFDM system) . . . . . . . . . . . . . . . . . .46 Chapter V SIMULATION RESULTS & DISSCUSSION. . . . . . . . . . . . . .. . . .47 Chapter VI CONCLUSION. . . . .. . . . . . . . . . . . . . . .. . . .93 REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    [1] A. A. M. Saleh, “Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers,” IEEE Trans. Commun., vol. COM-29, pp. 1715-1720, Nov. 1981.
    [2] G. Karam and H. Sari, “Analysis of predistortion, equaliztion, and ISI cancellation techniques in digital radio systems with nonlinear transmit amplifiers,” IEEE Trans. Commun., vol. 37, pp. 1245-1253, Dec. 1989.
    [3] S. Pupolin and L. J. Greenstein, “Performance analysis of digital radio links with nonlinear transmit amplifiers,” IEEE J. Select. Areas Commun., vol. SAC-5, pp. 534-546, Apr. 1987.
    [4] J. Tsimbinos and K. V. Lever, ”Computational complexity of Volterra based nonlinear compensators,” IEEE Electron. Lett., vol. 32, no. 9, pp. 852-854, Apr. 1996.
    [5] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, S. Kenney, J. Kim, and C. R. Giardina, ”A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun., vol. 52, no. 1, pp. 159-164, Jan. 2004.
    [6] L. Ding and G. T. Zhou, “Effects of even-order nonlinear terms on power amplifier modeling and predistortion lineariztion,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 156-162, Jan. 2004.
    [7] J. K. Cavers, “Amplifier linearization using a digital predistortion with fast adaptation and low memory requirements,” IEEE Trans. on Vec. Technol., vol. 39, pp. 374-382, Nov. 1990.
    [8] M. Faulkner and M. Johansson, “Adaptive linearization using predistortion -experimental results, ” IEEE Trans. on Vec. Technol, vol. 43, no. 2, May 1994.
    [9] H. Bebes amd T. Le-Ngoc, “A Fast Adaptive Predistorter for Nonlinearly amplified M-QAM Signals,” Global Telecommunications Conference, 2000. GLOBECOM '00. IEEE, vol. 1, pp. 108-112, Dec. 2000.
    [10] N. A. D’Andrea, V. Lottici, and R. Reggiannini, “RF power amplifier linearization through amplitude and phase predistortion,” IEEE Trans. Commun., vol. 44, pp. 1477-1484, Nov. 1996.
    [11] C.Eun and E. J. Powers, “A new Volterra Predistorter based on the indirect learning architecture,” IEEE Trans. Signal Processing, vol. 45, no. 1, pp. 223-227, Jan. 1997.
    [12] H. Lai and Y. Bar-Ness, “Minimum distortion power polynomial model (MDP-PM) of nonlinear power amplifiers and its application on analog predistorters,” in IEEE Vehicular Technol. Conf., Amsterdam, the Netherlands, Sept. 1999.
    [13] H. Lai, “An adaptation procedure on envelope statistics for predistorter designs based on statistical modeling methods,” Circuits and Systems II: Express Briefs, IEEE Transactions on [see also Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on] on Vol. 52, Issue 11, Nov. 2005 pp.756 - 760
    [14] Y. Guo and J. R. Cavallaro, “A novel adaptive pre-distorter using LS estimation of SSPA non-linearity in mobile OFDM systems,” Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on, vol. 3, pp. 453-456, May 2002.
    [15] H. W. Kang, Y. S. Cho, and D. H. Youn, “On compensating nonlinear distortions of an OFDM system using an efficient adaptive predistorter,” IEEE Trans. on Commun., vol. 47, no. 4, pp. 522-526, Apr 1999.
    [16] S. Andreoli, H. G. McClure, P. Banelli, and S. Cacopardi, ”Digital linearizer for RF amplifiers,” IEEE Transactions on Broadcasting, vol. 43, no. 1, pp. 12-19, Mar 1997.

    無法下載圖示 全文公開日期 2008/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE